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Deep learning and Machine learning

Chatbots Autonomous driving

Brain tumor classification AI music generation

Deep learning and machine learning become ubiquitous in
applications.
Optimization plays a vital role in deep learning.
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Optimization for non-convex functions
Problem formulation

Problem: We define the problem as

min
Θ

f (Θ)

where Θ ∈ Rn and f : Rn → R is a non-linear, non-convex smooth
function.

Goal: Find the minima to the problem.
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Mathematical definition

The deep learning problem can be redefined as

minimize
Θ∈Rd

f (Θ) ≡ 1
n

n∑
j=1

fj(Θj),

where

Θ ∈ Rd is a vector of size ≈ 4 × 105,
fj depends on the j th observation in {xj ,yj}n

j=1.
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Optimization for non-convex functions

The Rosenbrock function:

minimize
Θ1,Θ2∈R

f (Θ1,Θ2) ≡ (1 −Θ1)
2 + (Θ2 −Θ2

1)
2,

Minima: Θ∗
1 = 1,Θ∗

2 = 1.
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First-order optimization methods

Gradient-based (steepest) descent method:

Θk+1 = Θk − η∇Θf (Θk ) ,

where ∇Θf (Θk ) ∈ Rn is the gradient and η ∈ R is the step length.
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Second-order optimization methods

Newton’s method:

Θk+1 = Θk − [H(Θk )]
−1 ∇Θf (Θk ),

where H(Θk ) ∈ Rn×n is the Hessian.
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Observation and motivation

Gradient based methods

Benefits:

Calculate gradient ≈ O(n)
Storing gradient ≈ O(n)

Drawbacks:

No curvature
Saddle points
Linear convergence

Newton’s method

Benefits:

Avoids saddle points
Quadratic convergence

Drawbacks:

Hessian storage ≈ O(n2)

Hessian invert ≈ O(n3)

Non-invertible Hessian

Motivation: Find a suitable compromise between first- and second-
order methods.
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I. Trust-region methods

Trust region subproblem:

minimize
p∈Rn

Qk (p) ≡ f (Θk ) + g⊤
k p +

1
2

p⊤Bkp

subject to∥p∥2 ≤ ∆k ,
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I. Solving the subproblem

Conjugate-Gradient (CG) method
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Convex Q: pk arrives at unconstrained minimizer.
Convex Q: pk is defined where CG crosses the boundary.
Non-convex Q: terminates on the boundary along last CG iterate
pk .

Challenge: Computing the matrix-vector product in CG.
Proposed approach: Pearlmutter’s technique
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I. Hessian-vector products

Martens et al.1:

Hkd = lim
ϵ→0

1
ϵ

(
∇f (Θ + ϵd)−∇f (Θ)

)
.

Proposed approach: Pearlmutter’s technique2:

Hkd = lim
r→0

∇f (Θ + rd)−∇f (Θ)

r
=

∂

∂r
∇f (Θ + rd)

∣∣∣∣
r=0

.

Advantages:
Uses true Hessian information,
Cheap to store,
Cheap to compute.

1J. Martens et al. “Deep learning via hessian-free optimization.”. In: ICML. vol. 27. 2010, pp. 735–742.
2B. A Pearlmutter. “Fast exact multiplication by the Hessian”. In: Neural computation 6.1 (1994), pp. 147–160.
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I. Summary

1 Trust-region methods define a sequence of quadratric
subproblems with a trust-region constraint.

2 Solve the trust-region subproblem using conjugate-gradient
methods.

3 Use Pearlmutter’s fast-exact Hessian products.
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I. Performance on Rosenbrock function

Evolution of iterates for the Rosenbrock function.
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I. Experiment - Classification problem

Deep learning architecture (Multi-Layer Perceptron):

. .
 .

. .
 .

. .
 .

True label y:
[

0 0 0 1 0 0 0 0 0 0
]

Classes:
[

0 1 2 3 4 5 6 7 8 9
]

Prediction ŷ:
[
.01 .01 .01 .72 .01 .01 .01 .01 0.2 .01

]
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I. Results and observations
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Observation: The method can be time-demanding due to the number
of computations.
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II. Adaptive regularization using cubics

Trust-region subproblem:

minimize
p∈Rn

Qk (p) ≡ f (Θk ) + g⊤
k p +

1
2

p⊤Bkp

subject to ∥p∥2 ≤ ∆k .
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Adaptive Regularized Cubics (ARCs) subproblem

minimize
s∈Rn

Mk (s) ≡ f (Θk ) + g⊤
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1
2

s⊤Bks +
σk

3
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1
2

p⊤Bkp

subject to ∥p∥2 ≤ ∆k .

Adaptive Regularized Cubics (ARCs) subproblem

minimize
s∈Rn

Mk (s) ≡ f (Θk ) + g⊤
k s +

1
2

s⊤Bks +
σk

3
ϕ(s)3.

Observation: Particular form of Bk allows for closed form solution.
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II. Limited-memory symmetric-rank-1 updates

Limited-memory Symmetric-Rank-1 updates (L-SR1):

Bk+1 = Bk +
(yk − Bksk )(yk − Bksk )

⊤

(yk − Bksk )⊤sk
,

where
Bk is the Hessian approximation,
yk = ∇f (Θk+1)−∇f (Θk ),
sk = Θk+1 −Θk .

Aditya Ranganath (LLNL) April 19, 2024 20/ 34 20 / 34



II. Limited-memory symmetric-rank-1 updates

Limited-memory Symmetric-Rank-1 updates (L-SR1):

Bk+1 = Bk +
(yk − Bksk )(yk − Bksk )

⊤

(yk − Bksk )⊤sk︸ ︷︷ ︸
Rank 1 (outer-product) update

,

where
Bk is the Hessian approximation,
yk = ∇f (Θk+1)−∇f (Θk ),
sk = Θk+1 −Θk .
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II. L-SR1 compact representation

Recursively,

Bk+1 = B0 +
m∑
j=0

(yj − Bjsj)(yj − Bjsj)
⊤

(yj − Bjsj)⊤sj︸ ︷︷ ︸
rank m update

.
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Recursively,

Bk+1 = B0 +
m∑
j=0

(yj − Bjsj)(yj − Bjsj)
⊤

(yj − Bjsj)⊤sj︸ ︷︷ ︸
rank m update

.

Compact representation of Bk+1:

Bk+1 = B0 +

 Ψk

[ Mk
] [

Ψ⊤
k

]
,

where Ψk ∈ Rn×m, M ∈ Rm×m and B0 = γI.
Note: m ≪ n
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II. QR decomposition

QR decomposition of Ψk :

Bk+1 = γI +

 Ψk

[ Mk
] [

Ψ⊤
k

]
,
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II. QR decomposition

QR decomposition of Ψk :

Bk+1 = γI +

 QkRk

[ Mk
] [

R⊤
k Q⊤

k
]
,
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II. Eigendecomposition

Eigendecomposition of RkMkR⊤
k :

Bk+1 = γI +

 QkPk

[ Λk ]
[

P⊤
k Q⊤

k

]
,
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II. Eigendecomposition

Computing the eigenvectors of ΨkMkΨ
⊤
k :

Bk+1 = γI +

 U∥

[ Λk ]
[

U⊤
∥

]
,

Aditya Ranganath (LLNL) April 19, 2024 23/ 34 23 / 34



II. Orthonormal space

Computing the eigenvectors of Bk+1:

Bk+1 = γI +

 U∥ U⊥




(Λk )∥ 0

0 0




U⊤
∥

U⊤
⊥



=

 U∥ U⊥



(Λk )∥ + γI 0

0 γI




U⊤
∥

U⊤
⊥


= UΛU⊤
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II. Subproblem transformation

Recall the ARCs subproblem:

minimize
s∈Rn

Mk (s) ≡ f (Θk ) + g⊤
k sk +

1
2

s⊤
k Bksk +

σk

3
∥sk∥3

U.

Applying the change of variables ∥s∥U
def
= ∥U⊤s∥3

def
= ∥s̄∥3 :

minimize
s̄∈Rn

M̄k (s̄) ≡ ḡ⊤
k s̄k +

1
2

s̄⊤
k Λs̄k +

σk

3
∥s̄k∥3

3.

ARCs subproblem decomposition:

minimize M̄(s̄)
s̄∈Rn

≡
n∑

i=1

minimize
s̄i

(
ḡi s̄i +

λi

2
s̄i

2 +
σ

3
|s̄i |3

)
Observation: This has a closed form solution!
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ḡi s̄i +

λi

2
s̄i

2 +
σ

3
|s̄i |3

)
Observation: This has a closed form solution!

Aditya Ranganath (LLNL) April 19, 2024 25/ 34 25 / 34



II. Subproblem transformation

Recall the ARCs subproblem:

minimize
s∈Rn

Mk (s) ≡ f (Θk ) + g⊤
k sk +

1
2

s⊤
k Bksk +

σk

3
∥sk∥3

U.

Applying the change of variables ∥s∥U
def
= ∥U⊤s∥3

def
= ∥s̄∥3 :

minimize
s̄∈Rn

M̄k (s̄) ≡ ḡ⊤
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II. Solution to the CR subproblem

Exact solution in s̄:

s̄∗ = −Cḡ,

where C = diag(c1, c2 . . . cn) and

ci =
2

λi +
√
λ2

i + 4σ|ḡi |
.
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II. Solution to the CR subproblem

Exact solution in s̄:

s̄∗ = −Cḡ,

where C = diag(c1, c2 . . . cn) and

ci =
2

λi +
√
λ2

i + 4σ|ḡi |
.

Exact solution in s:
s∗ = Us̄∗. (1)
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II. Convergence analysis

Assumptions:
A1. The loss function f (Θ) is continuously differentiable, i.e.,
f ∈ C1(Rn).

A2. The loss function f (Θ) is bounded below.
A3. If {Θti} and {Θli} are subsequences of {Θk}, then ∥gti − gli∥ → 0
whenever ∥Θti −Θli∥ → 0 as i → ∞.

Lemma

The SR1 matrix Bk+1 satsifies ∥Bk+1∥F ≤ κB for all k ≥ 1
for some κB > 0.

Theorem

Under Assumptions A1, A2, and A3, if Lemma 1 holds, then
lim

k→∞
∥gk∥ = 0.
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II. Evolution on the Rosenbrock function
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II. Experiment - Image reconstruction

Ground truth (x)

MSE = ||x - x||

Latent space (z)

Encoder (E)

Noisy observation (y) Reconstruction (x) 

Decoder (D)

^
^

2

Autoencoder operation:
Encoder: Downsamples image to latent space z.

Decoder: Upsamples from z to image space.
Loss function: Mean-square error between Reconstruction and
Ground truth.
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II. Experiment - Image reconstruction results

a. b.

Table: Results on MNIST dataset. Fig. a. Initial training response. Fig. b. Final
training response
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II. Experiment - Image reconstruction results

a. b.

Table: Results on MNIST dataset. Fig. a. Initial training response. Fig. b. Final
training response

Proposed approach minimizes the loss function in the fewest number
of steps.
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II. Experiment - Image reconstruction results

a. b.

Table: Results on MNIST dataset. Fig. a. Initial testing response Fig. b. Final
testing response
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II. Experiment - Image reconstruction results

a. b.

Table: Results on MNIST dataset. Fig. a. Initial testing response Fig. b. Final
testing response

Proposed approach generalizes over the test dataset better in
comparison.
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II. Experiment - Classification results CIFAR10

The proposed approach performs better than most existing
state-of-the-art method.
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II. Experiment - Timing results

Observation: Method converges fast.
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Conclusion and Remarks

Deep learning is an important tool in data science.

Optimization techniques play crucial roles in improving prediction
models.
Existing state-of-the-art methods use and retain only first-order
information.
We developed two methods that compromise first- and
second-order methods.
The method uses an adaptive regularized cubics approach with a
L-SR1 quasi-Newton approximation.
Numerical experiments demonstrate improvement over existing
state-of-the-art methods.

Aditya Ranganath (LLNL) April 19, 2024 33/ 34 33 / 34



Conclusion and Remarks

Deep learning is an important tool in data science.
Optimization techniques play crucial roles in improving prediction
models.

Existing state-of-the-art methods use and retain only first-order
information.
We developed two methods that compromise first- and
second-order methods.
The method uses an adaptive regularized cubics approach with a
L-SR1 quasi-Newton approximation.
Numerical experiments demonstrate improvement over existing
state-of-the-art methods.

Aditya Ranganath (LLNL) April 19, 2024 33/ 34 33 / 34



Conclusion and Remarks

Deep learning is an important tool in data science.
Optimization techniques play crucial roles in improving prediction
models.
Existing state-of-the-art methods use and retain only first-order
information.

We developed two methods that compromise first- and
second-order methods.
The method uses an adaptive regularized cubics approach with a
L-SR1 quasi-Newton approximation.
Numerical experiments demonstrate improvement over existing
state-of-the-art methods.

Aditya Ranganath (LLNL) April 19, 2024 33/ 34 33 / 34



Conclusion and Remarks

Deep learning is an important tool in data science.
Optimization techniques play crucial roles in improving prediction
models.
Existing state-of-the-art methods use and retain only first-order
information.
We developed two methods that compromise first- and
second-order methods.

The method uses an adaptive regularized cubics approach with a
L-SR1 quasi-Newton approximation.
Numerical experiments demonstrate improvement over existing
state-of-the-art methods.

Aditya Ranganath (LLNL) April 19, 2024 33/ 34 33 / 34



Conclusion and Remarks

Deep learning is an important tool in data science.
Optimization techniques play crucial roles in improving prediction
models.
Existing state-of-the-art methods use and retain only first-order
information.
We developed two methods that compromise first- and
second-order methods.
The method uses an adaptive regularized cubics approach with a
L-SR1 quasi-Newton approximation.

Numerical experiments demonstrate improvement over existing
state-of-the-art methods.

Aditya Ranganath (LLNL) April 19, 2024 33/ 34 33 / 34



Conclusion and Remarks

Deep learning is an important tool in data science.
Optimization techniques play crucial roles in improving prediction
models.
Existing state-of-the-art methods use and retain only first-order
information.
We developed two methods that compromise first- and
second-order methods.
The method uses an adaptive regularized cubics approach with a
L-SR1 quasi-Newton approximation.
Numerical experiments demonstrate improvement over existing
state-of-the-art methods.

Aditya Ranganath (LLNL) April 19, 2024 33/ 34 33 / 34



THANK YOU
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