

EECS 230 Deep Learning Lecture 15: Graph Neural Network

Some slides from Simon Prince, Paul-Edouard Sarlin, and Jure Leskovec

Outline

Graph Neural Network

- Graph convolution layer
- Graph convolutional network
- Graph attention network

□An application to correspondence matching

□SuperGlue for visual localization

Graph Neural Network

Real-world graphs

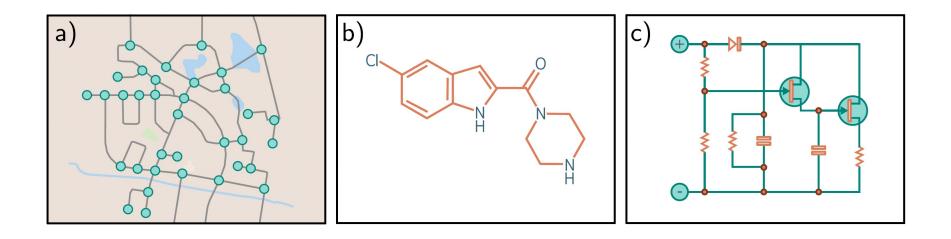
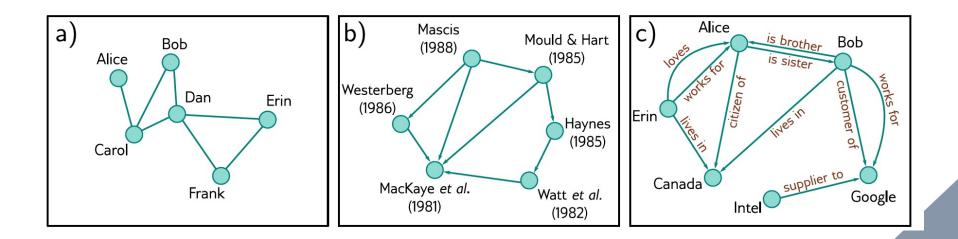


Figure 13.1 Real-world graphs. Some objects, such as a) road networks, b) molecules, and c) electrical circuits, are naturally structured as graphs.

Types of graphs

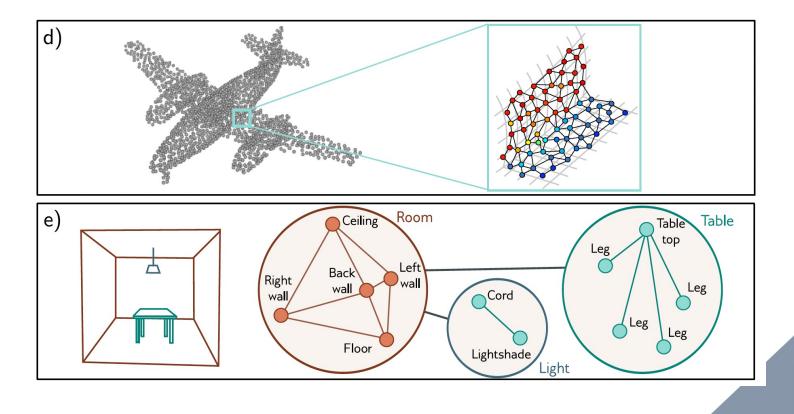
□a) social network is an undirected graph

- □b) citation network is a directed graph
- □c) Knowledge graph is a directed heterogeneous multigraph



Types of graphs

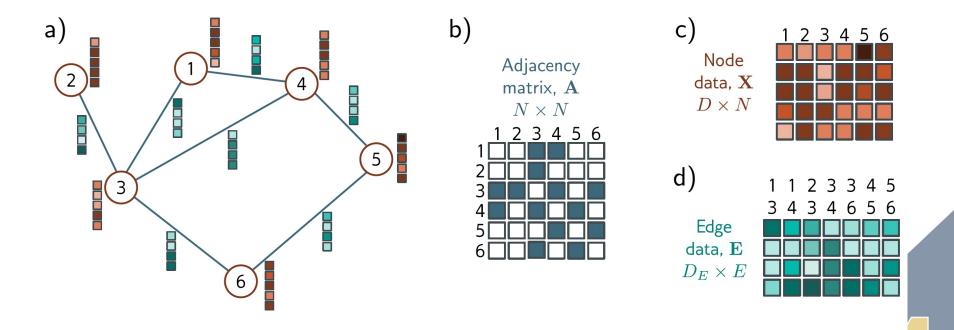
d) point cloud as a geometric graphe) Scene graph is hierarchical



Graph representation

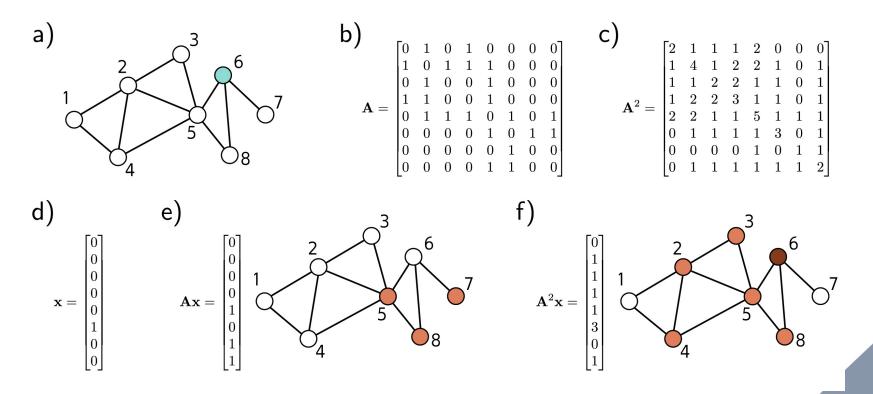
A graph is defined as a tuple G = (V, E)
 where V is a set of nodes
 and E is a set of edges

□An example graph with 6 nodes and 7 edges



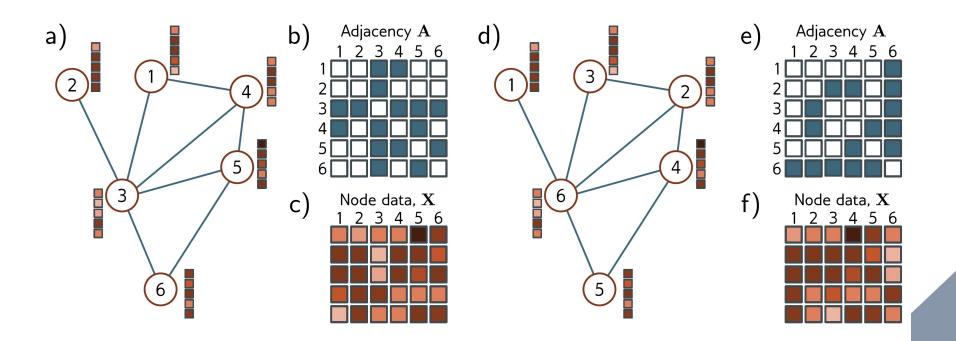
Properties of adjacency matrix

□ A^kx gives the number of paths of length k to a node



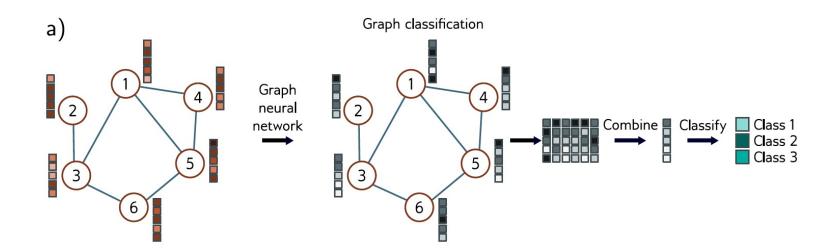
Permutation invariance

A graph neural network should be permutation invariantCNN? MLP?



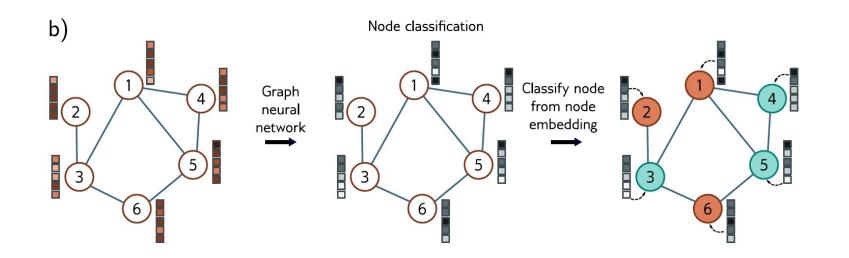
Tasks on graphs

Graph classification



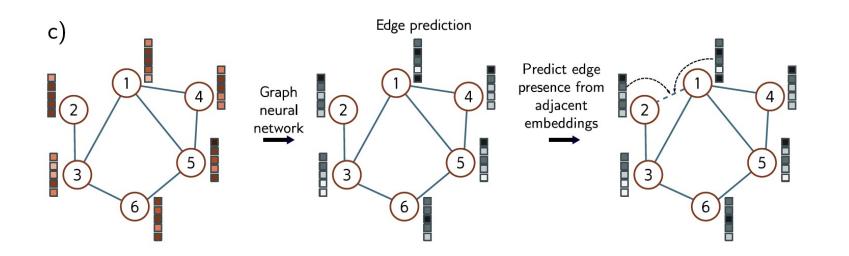
Tasks on graphs

□Node classification

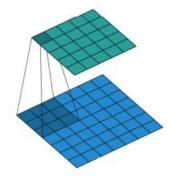


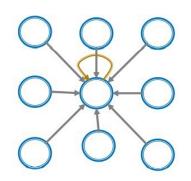
Tasks on graphs

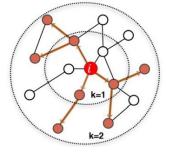
□Edge classification

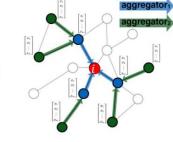


Convolution on a neighborhood





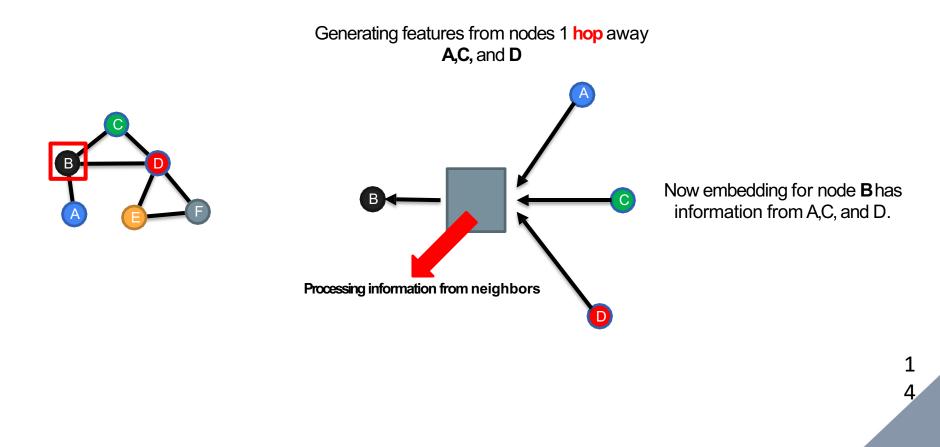


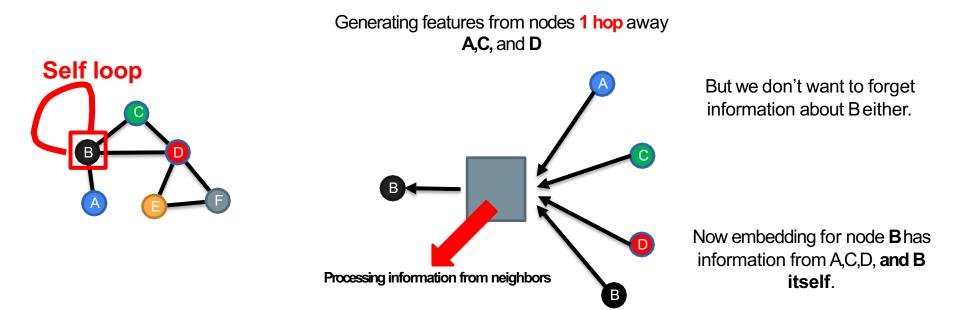


CNN: Pixel convolution

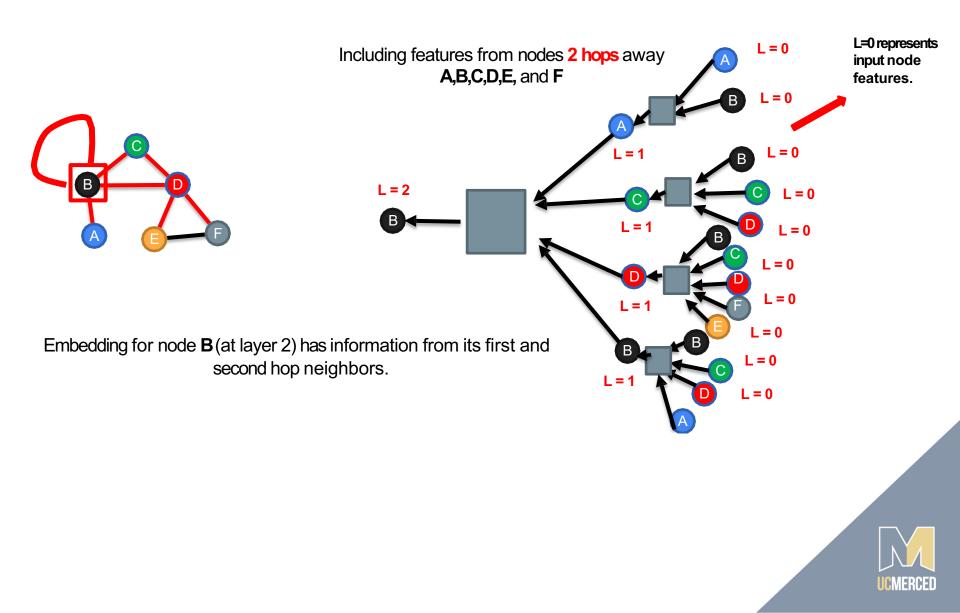
CNN: Pixel convolution (as a graph)

GNN: Graph convolution



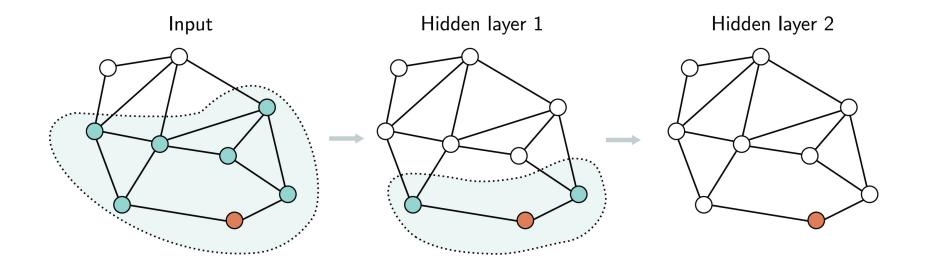


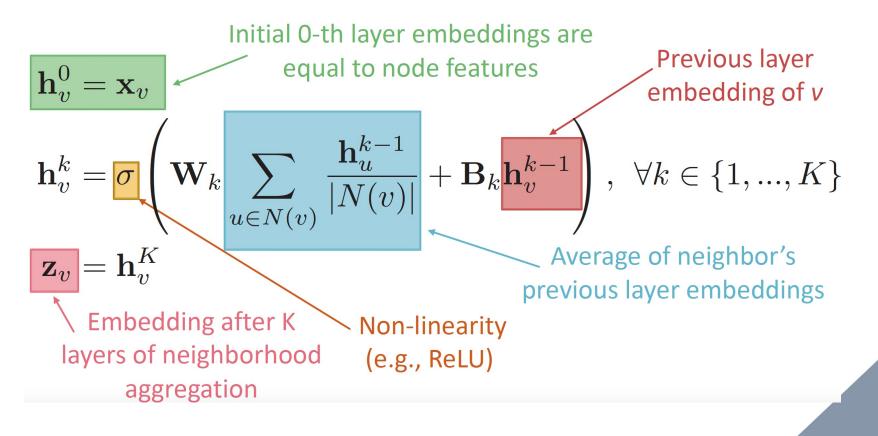
Two layers of graph convolution



Receptive fields in graph neural networks

□Increasing receptive fields with more layers/hops





Recap: Simple neighborhood aggregation:

$$\mathbf{h}_{v}^{k} = \sigma \left(\mathbf{W}_{k} \sum_{u \in N(v)} \frac{\mathbf{h}_{u}^{k-1}}{|N(v)|} + \mathbf{B}_{k} \mathbf{h}_{v}^{k-1} \right)$$

- Graph convolutional operator:
 - Aggregates messages across neighborhoods, N(v)
 - $\alpha_{vu} = 1/|N(v)|$ is the **weighting factor (importance)** of node u's message to node v
 - $\Rightarrow \alpha_{vu}$ is defined **explicitly** based on the structural properties of the graph
 - \Rightarrow All neighbors $u \in N(v)$ are equally important to node v

Graph attention network

Can we do better than simple neighborhood aggregation?

Can we let weighting factors α_{vu} to be implicitly defined?

Goal: Specify arbitrary importances to different neighbors of each node in the graph

Idea: Compute embedding h of each node in the graph following an attention strategy:

Nodes attend over their neighborhoods' message
 Implicitly specifying different weights to different nodes in a neighborhood

[Velickovic et al., ICLR 2018; Vaswani et al., NIPS 2017]

Graph attention

- Let α_{vu} be computed as a byproduct of an attention mechanism a:
 - Let a compute attention coefficients e_{vu} across pairs of nodes u, v based on their messages:

$$e_{vu} = a(\boldsymbol{W}_k \boldsymbol{h}_u^{k-1}, \boldsymbol{W}_k \boldsymbol{h}_v^{k-1})$$

• e_{vu} indicates the importance of node u's message to node v

 Normalize coefficients using the softmax function in order to be comparable across different neighborhoods:

$$\alpha_{vu} = \frac{\exp(e_{vu})}{\sum_{k \in N(v)} \exp(e_{vk})}$$
$$h_v^k = \sigma(\sum_{u \in N(v)} \alpha_{vu} W_k h_u^{k-1})$$
Next: What is the form of attention mechanism *a*?

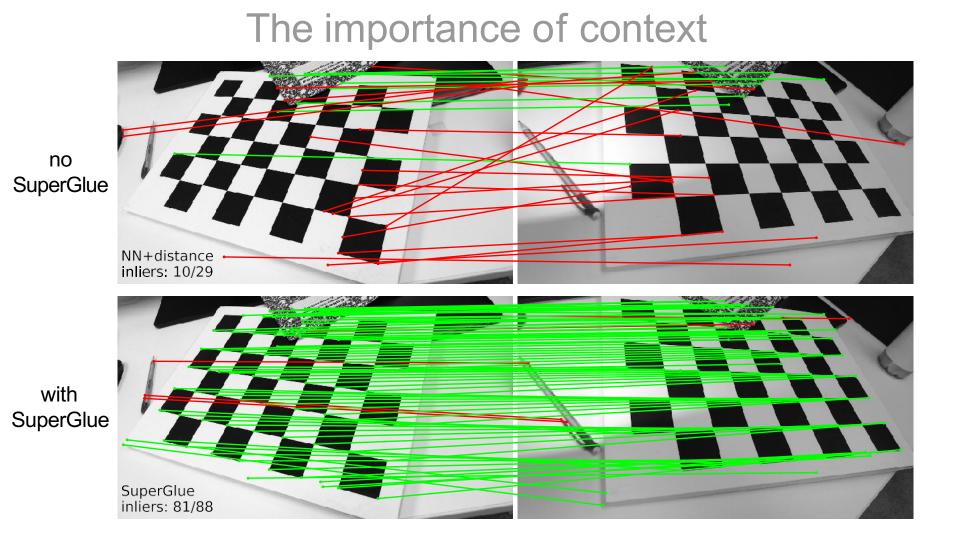
An application of Graph Neural Network - SuperGlue feature matching

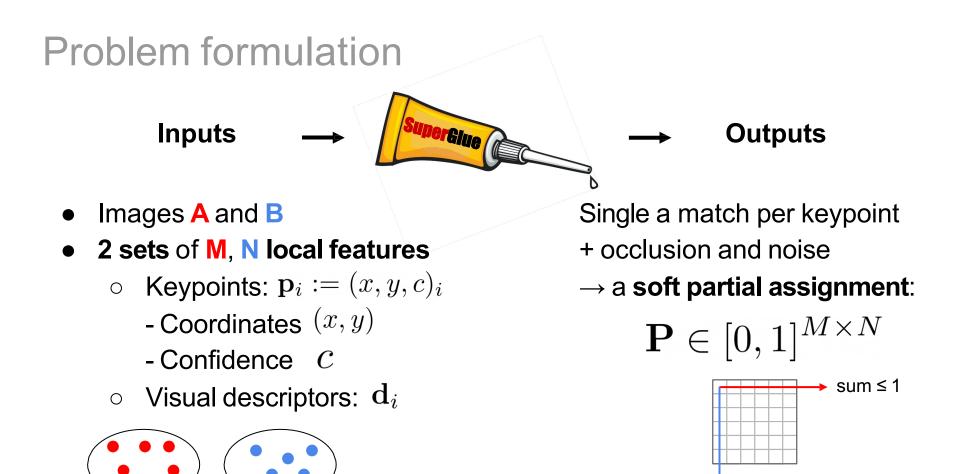
SuperGlue: Learning Feature Matching with Graph Neural Networks

Paul-Edouard Sarlin¹ Tomasz Malisiewicz²

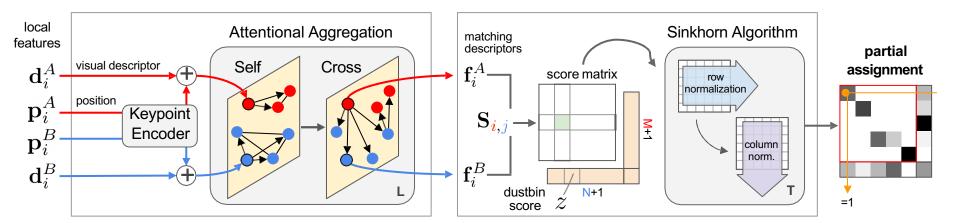
EHzürich

Daniel DeTone² Andrew Rabinovich²





sum ≤ 1

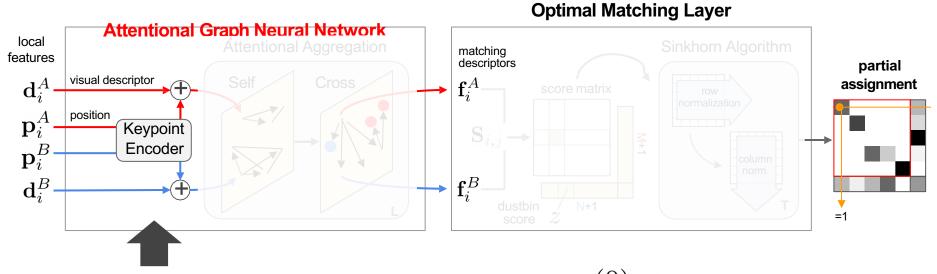


A Graph Neural Network with attention

Solving a partial assignment problem

Encodes contextual cues & priors Reasons about the 3D scene Differentiable solver

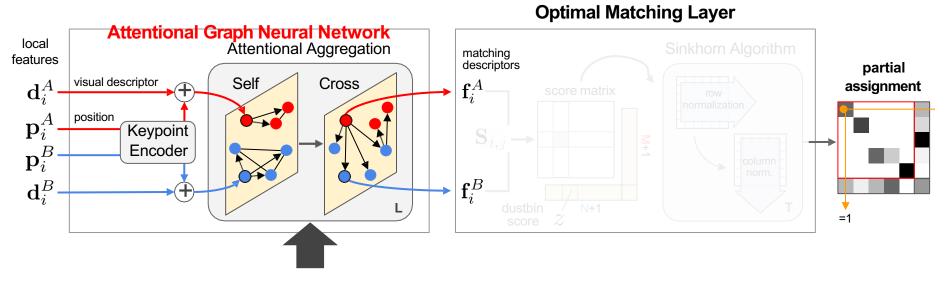
Enforces the assignment constraints = domain knowledge



- Initial representation for each keypoints i : $^{(0)}\mathbf{x}_i$
- Combines visual appearance and position with an MLP:

$$^{(0)}\mathbf{x}_{i}=\mathbf{d}_{i}+\mathrm{MLP}\left(\mathbf{p}_{i}\right)$$

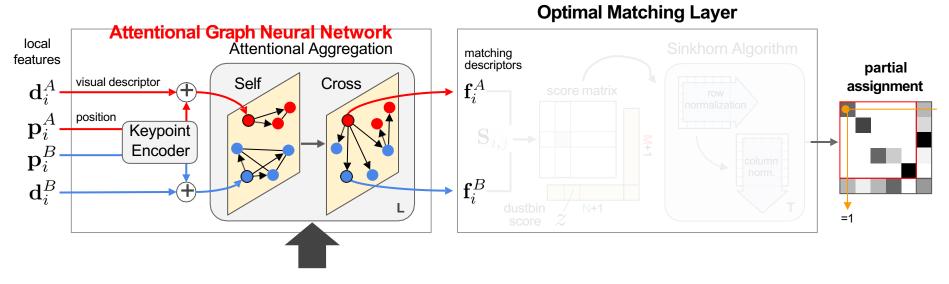
Multi-Layer Perceptron



Update the representation based on other keypoints:

- in the same image: "self" edges
- in the other image: "cross" edges
- \rightarrow A complete **graph** with two types of edges

 $\stackrel{\mathbf{s}}{\underset{\mathbf{es}}{\overset{(\ell)}{\longrightarrow}}} \mathbf{x}_i^A \longrightarrow {}^{(\ell+1)} \mathbf{x}_i^A$



Update the representation using a Message Passing Neural Network

Attentional Aggregation

- Compute the message $\, {f m}_{{\cal E}
 ightarrow i} \,$ using self and cross attention
- Soft database retrieval: query $\, {f q}_i$, key ${f k}_j$, and value ${f v}_j$

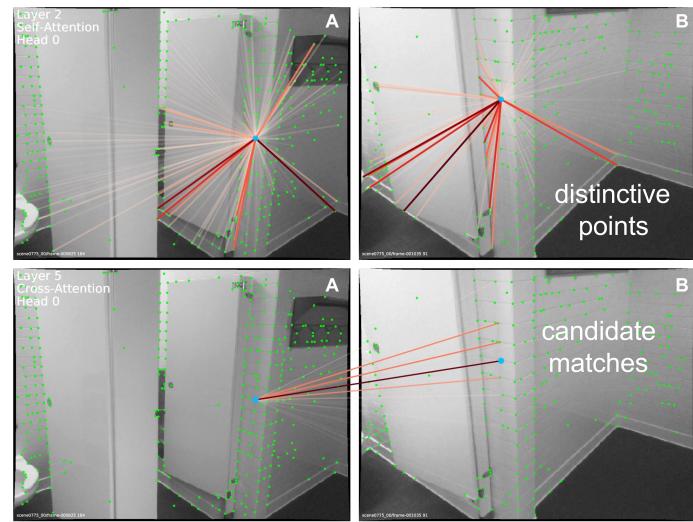


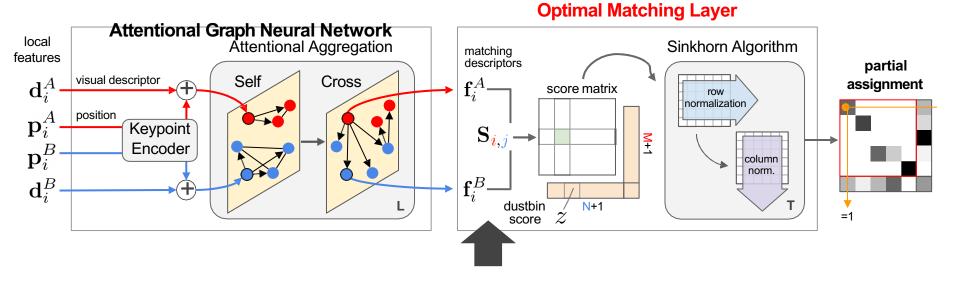
flow

Cross-attention

= inter-image

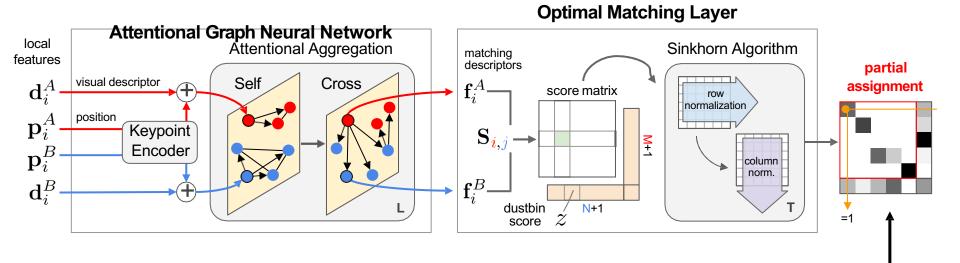
Attention builds a **soft**, **dynamic**, **sparse graph**





Compute a score matrix $\mathbf{S} \in \mathbb{R}^{M \times N}$ for all matches:

$$\begin{aligned} \mathbf{f}_i^A = \mathbf{W} \cdot {}^{(L)} \mathbf{x}_i^A + \mathbf{b} \\ \mathbf{S}_{i,j} = < \mathbf{f}_i^A, \mathbf{f}_j^B > \end{aligned}$$

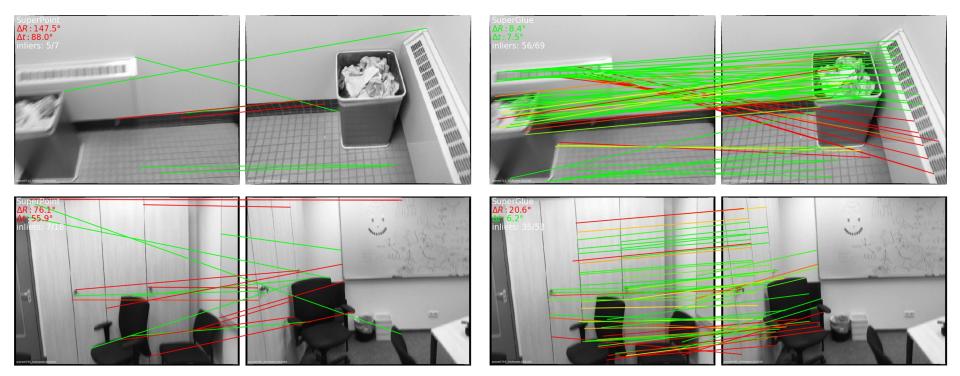


- Compute ground truth correspondences from pose and depth
- Find which keypoints should be unmatched
- Loss: maximize the log-likelihood $\bar{\mathbf{P}}_{i,j}$ of the GT cells

Results: indoor - ScanNet

SuperPoint + NN + heuristics

SuperPoint + SuperGlue

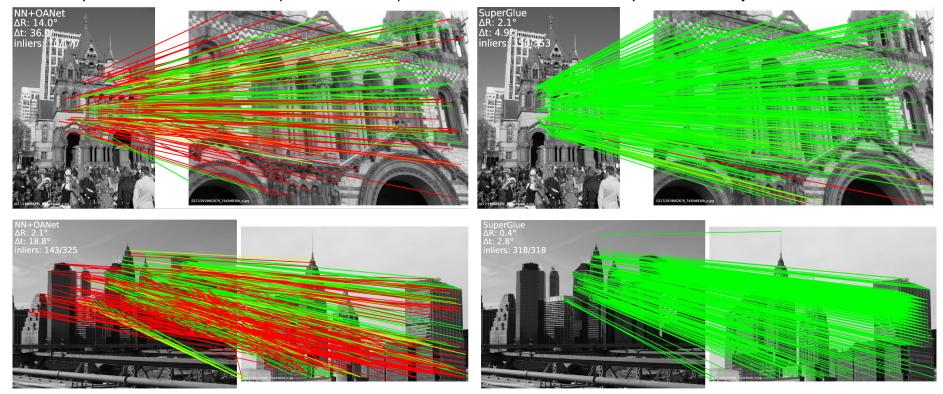


SuperGlue: more correct matches and fewer mismatches

Results: outdoor - SfM

SuperPoint + NN + OA-Net (inlier classifier)

SuperPoint + SuperGlue



SuperGlue: more correct matches and fewer mismatches