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EECS 230 Deep Learning
Lecture 15: Graph Neural Network

Some slides from Simon Prince, Paul-Edouard Sarlin, and Jure Leskovec



Outline

JGraph Neural Network
Graph convolution layer
Graph convolutional network
Graph attention network

JAn application to correspondence matching
SuperGlue for visual localization
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Graph Neural Network



Real-world graphs

Figure 13.1 Real-world graphs. Some objects, such as a) road networks, b)
molecules, and c) electrical circuits, are naturally structured as graphs.




Types of graphs

Ja) social network is an undirected graph

b) citation network is a directed graph

c) Knowledge graph is a directed heterogeneous multigraph
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Types of graphs

dd) point cloud as a geometric graph

de) Scene graph is hierarchical




Graph representation

A graph is defined as a tuple G = (V, E)
where V is a set of nodes
and E is a set of edges

JAn example graph with 6 nodes and 7 edges

b) c)

Adjacency

matrix, A
N x N
23456

HEEEO

. 1
. mm | [mN
n ZJEE EEN
e} | |m] (W]
AMCIEC 1]
ciHEE [ |
e JCIMCImC]



Properties of adjacency matrix
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Akx gives the number of paths of length k to a node




Permutation invariance

A graph neural network should be permutation invariant

JCNN? MLP?
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Tasks on graphs

A Graph classification

Graph classification

Graph

neural

network Classify []Class 1
— wep [l Class 2

B Class 3




Tasks on graphs

LINode classification

Node classification

Graph Classify node !»
neural from node

network embedding
— —




Tasks on graphs

JEdge classification

Edge prediction

adjacent
embeddings




Graph convolution

(A Convolution on a neighborhood

CNN: Pixel convolution CNN: Pixel convolution GNN: Graph convolution
(@asagraph)




Graph convolution

Generating features from nodes 1 hop away
AC,and D

e ¢ | G Now embedding for node Bhas
information from AC, and D.

Processing information from neighbors




Graph convolution

Generating features from nodes 1 hop away
AC,andD

Self loop

But we don’t want to forget
information about B either.

E@ Now embedding for node Bhas

information from ACD, and B
Processing information from neighbors itself.




Two layers of graph convolution

_ L=0 represents
Including features from nodes 2 hops away L=0 input node
AB,CDE, and F features.

Embedding for node B (at layer 2) has information from its first and
second hop neighbors.




Receptive fields in graph neural networks

dincreasing receptive fields with more layers/hops

Hidden layer 1 Hidden layer 2




Graph convolution

Initial O-th layer embeddings are

__— equal to node features Previous layer
embedding of v
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° previous layer embeddings

\ Embedding after K Non-linearity
layers of neighborhood  (e.g., ReLU)

aggregation




Graph convolution

Recap: Simple neighborhood aggregation:
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Graph convolutional operator:

= Aggregates messages across neighborhoods, N (v)
" a,, = 1/|N(v)| is the weighting factor (importance) of
node u’s message to node v

" = a,, is defined explicitly based on the structural
properties of the graph

= = All neighbors u € N(v) are equally important to
node v




Graph attention network

Canwe do better than simple neighborhood aggregation?
Canwe let weighting factors a4, to be implicitly defined?

Goal: Specify arbitrary importances to different
neighbors of each node in the graph

Idea: Compute embedding h of each node in
the graph following an attention strategy:
Nodes attend over their neighborhoods’ message

Implicitly specifying different weights to different
nodes in a neighborhood

[Velickovic et al., ICLR 2018; Vaswani et al., NIPS 2017]



Graph attention

Let a,,,, be computed as a byproduct of an
attention mechanism a:

" Let a compute attention coefficients e,,,, across pairs
of nodes u, v based on their messages:

— k-1 k-1
Cvu = a(thu ) thv )
= e,, indicates the importance of node u’'s message to node v

* Normalize coefficients using the softmax function in
order to be comparable across different
neighborhoods:

— exp(evu)
Zke]\](v) exp(evk)
hl?ﬁ = O-(ZuEN(v) avuwkhﬁ_l)
Next: What is the form of attention mechanism a?

avu
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An application of Graph Neural Network
- SuperGlue feature matching



\w SuperGlue:

Learning Feature Matching
with Graph Neural Networks

Paul-Edouard Sarlin? Daniel DeTone?
Tomasz Malisiewicz? Andrew Rabinovich?

ETHzirich 4
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The importance of context

inliers: 10/29
inliers: 81/88

NN+distance
SuperGlue
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SuperGlue
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Inputs —_ - —»  Outputs

b

I

e ImagesAandB Single a match per keypoint
e 2 sets of M, N local features + occlusion and noise
o Keypoints: Pi := (T, ¥, ¢); — a soft partial assignment:
- Coordinates (Z,¥)
P c [0, 1]M*¥

- Confidence C
o Visual descriptors: d;

M
sum <1

» sum <1




local Attentional Aggregation

visual descriptor

position

features
0/. ()
o

Keypoint
Encoder
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matching Sinkhorn Algorithm
desariptors m e ™\ partial
f zA score matrix o assignment
— normalization F—I_|
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A Graph Neural Network
with attention

Encodes contextual cues & priors

Reasons about the 3D scene

Solving a partial
assignment problem

Differentiable solver

Enforces the assignment constraints
= domain knowledge



local
features

Attentional Grabh Neural Network

visual descriptor

d4

position

Keypoint
Encoder

Optimal Matching Layer

matching
descriptors

—_— fz'A

¢ Initial representation for each keypoints 7 : (O)Xi

e Combines visual appearance and position with an MLP:

Multi-Layer Perceptron

partial
assignment




Optimal Matching Layer

Attentional Graph Neural Network

local Attentional Aggregation matching

features

| | e ™ descriptors partial
dA visual descriptor % W—_ fA assignment

i 7
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A | position
P; Keypoint ‘/. { 1y N

i Encoder
o -
ar T

o

Update the representation based on other keypoints:
- in the same image: “self’ edges (0) A (t+1) LA
-in the other image: “cross” edges i X
— A complete graph with two types of edges



Optimal Matching Layer

Attentional Graph Neural Network
local Attentional Aggregation matching

features _ -
A | visual descriptor 4 Self Cross ) defslcnptors P.al'tla|
d; g / _——| f; assignment
A | position : ./. ® n.—l—
ij léeypc()jlnt { IR
p. ncoder w -~
B B i
\ Y

Update the representation using a Message Passing Neural Network
(€+1) A _ (£) A (€) A |
x; = \'x; + MLP x; || me_y;

1
the message 41



e Compute the message IIl¢_; using self and cross attention

e Soft database retrieval: query (; , keykj,and vaIuer

Mge_; = Z 5 Vy q; = W, (E)Xi + by
J:(g)€eE [kg} _ [Wﬂ Dy + {bQ]
a;j = Softmax; (q; k;) | [vi] [Ws 7 |bs

i = [tile, pos. (80, 110)]
corner, pos. (60, 90)]

= [grid, pos. (400, 600)]

X4 = [tile, position (70, 100)] ," |

.

[Vaswani et al, 2017] W,



Self-attention
= intra-image
information
flow

distinctive
points

Cross-attention
= inter-image

Attention builds a
soft, dynamic,
sparse graph




Optimal Matching Layer

local Attentional Aggregation i Sinkhorn Algorithm
features ?eastgﬂglgrs i
artial
A | visual descriptor 4 Self Cross ) A /\ L (i ) p
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v » o v - normalization L‘—I_l
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Compute a score matrix S ¢ RM*N

for all matches:
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Optimal Matching Layer

Attentional Graph Neural Network
local Attentional Aggregation matching Sinkhorn Algorithm

features -~ ™ descriptors /\ e ™\ partial
A | visual descriptor Self Cross A ; L assi t
d > A | A — score matrix o gnmen
1 ® ? _ normalization L‘—l_
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score

e Compute ground truth correspondences from pose and depth
e Find which keypoints should be unmatched

e Loss: maximize the log-likelihood P; ; of the GT cells




Results: indoor - ScanNet

SuperPoint + NN + heuristics SuperPoint + SuperGlue

| I W Wit i1

SuperGlue: more correct matches and fewer mismatches



Results: outdoor - SfTM

SuperPoint + NN + OA-Net (inlier classifier) SuperPoint + SuperGlue

NN+OANet

NN+OANet

AR: 2.1°
Atz18.85
inliers: 143/325

3366303515190

SuperGlue: more correct matches and fewer mismatches



