

EECS 230 Deep Learning Lecture 14: Point Cloud Network

Some materials from Charles Qi and Hengshuang Zhao

Data modality

Text

□Sequence to sequence model

□Neural network for Point Cloud?

□Neural network for Graph?

Outline

□Neural network for point cloud

PointNet

□PointNet++

EdgeConv

Point Transformer

Graph Neural Network

Graph convolutional network

Graph attention network

□An application to correspondence matching

□SuperGlue for visual localization

Neural Network for Point Cloud

3D Applications

Robot Perception

source: Scott J Grunewald

Augmented Reality

source: Google Tango

Shape Design

source: solidsolutions

Shape representation

□How to represent a shape in computer?

Point Cloud from raw sensor

End-to-end learning for scattered, unordered point data

Unified framework for various tasks

...

End-to-end learning for scattered, unordered point data

Unified framework for various tasks

Challenges in Point Cloud Processing

Unordered point set as input

- □ Model needs to be invariant to N! permutations.
- Invariance under <u>geometric transformations</u>
- Point cloud rotations should not alter classification results.

Unordered Input

Point cloud: N orderless points, each represented by a D dim vector

Model needs to be invariant to N! permutations

Symmetric functions (permutation invariant)

Examples:

. . .

$$f(x_1, x_2, \dots, x_n) = \max\{x_1, x_2, \dots, x_n\}$$

$$f(x_1, x_2, \dots, x_n) = x_1 + x_2 + \dots + x_n$$

Basic PointNet architecture

Empirically, we use **multi-layer perceptron (MLP)** and **max pooling**:

Challenges in Point Cloud Processing

Unordered point set as input

- □ Model needs to be invariant to N! permutations.
- Invariance under <u>geometric transformations</u>
- Point cloud rotations should not alter classification results.

Data Transformation

Idea: Data dependent transformation for automatic alignment

Data Transformation

The transformation is just matrix multiplication!

Embedding space alignment

Regularization:

Transform matrix A 64x64 close to orthogonal:

$$L_{reg} = \|I - AA^T\|_F^2$$

input points

UCMERCED

Extend to Point Segmentation Network

Result on point cloud segmentation

dataset: Stanford 2D-3D-S (Matterport scans)

Does not extract a sequence of hierarchical features; except a global feature

Does not take into account the local geometry formed by points

Point Clouds

PointNet

PointNet++

Uses PointNet module as a building block

Transforms a set of *m* points to a single point with a feature vector

PointNet module

Qi et al. "PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space" 2017

Extracts hierarchical features by recursively applying PointNet module

PointNet module

Qi et al. "PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space" 2017

Sampling

Samples *n*' points using farthest point sampling

Grouping

For each of the sampled point, selects K points using either

- K-nearest neighbors or
- K points within maximum radius of R

PointNet Layer

Applies PointNet-module to each K-grouping of points and generates a feature vector

Sampling

Samples *n*' points using farthest point sampling

Grouping

For each of the sampled point, selects K points using either

- K-nearest neighbors or
- K points within maximum radius of R

PointNet Layer

Applies PointNet module to each K-grouping of points and generates a feature vector

Sampling

Samples n' points using farthest point sampling

Grouping

For each of the sampled point, selects K points using either

- K-nearest neighbors or
- K points within maximum radius of R

PointNet Layer

Applies PointNet-module to each K-grouping of points and generates a feature vector

Looks similar to convolution + pooling?

Qi et al. "PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space" 2017

PointNet++ for Classification and Segmentation

Qi et al. "PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space" 2017

PointNet++ for Classification

Hierarchical point set feature learning

Qi et al. "PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space" 2017

PointNet++ for Classification

Qi et al. "PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space" 2017

Max Pool + MLP on features of

the final layer

PointNet++ for Segmentation

PointNet++ for Segmentation

Qi et al. "PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space" 2017

PointNet++

Better Performance than PointNet Increased Compute Time

Limitations of PointNet++

Does not take into account the local geometry formed by points

Geometry of hierarchical features are pre-determined

Point Clouds

PointNet

EdgeConv

PointNet++

Wang et al. "Dynamic Graph CNN for Learning on Point Clouds" ACM Trans. Graph 2019

Form a local graph by connecting nearby points

Wang et al. "Dynamic Graph CNN for Learning on Point Clouds" ACM Trans. Graph 2019

Form a local graph by connecting nearby points

Apply convolution-like operation on this graph

Wang et al. "Dynamic Graph CNN for Learning on Point Clouds" ACM Trans. Graph 2019

Form a local graph by connecting nearby points

Apply convolution-like operation on this graph

 $x'_i = \Box_{j:(i,j)\in E} \quad h_{\Theta}(x_i, x_j)$

invariant function like max or sum

Form a local graph by connecting nearby points

Apply convolution-like operation on this graph

 $x'_i = \Box_{j:(i,j)\in E} \quad h_{\Theta}(x_i, x_j)$

invariant function like max or sum

Form a local graph by connecting nearby points

Apply convolution-like operation on this graph

 $\mathbf{x}_{j_{i3}}$ \mathbf{x}_{i} \mathbf{x}_{i} \mathbf{x}_{i} \mathbf{x}_{i} \mathbf{x}_{i} $\mathbf{x}_{j_{i4}}$ \mathbf{x}_{i} $\mathbf{x}_{j_{i5}}$ \mathbf{x}_{i} $\mathbf{x}_{j_{i4}}$ $\mathbf{x}_{j_{i4}}$ $\mathbf{x}_{j_{i4}}$ $\mathbf{x}_{j_{i5}}$ $\mathbf{x}_{j_{i5}}$ $\mathbf{x}_{j_{i5}}$ $\mathbf{x}_{j_{i5}}$ $\mathbf{x}_{j_{i5}}$ $\mathbf{x}_{j_{i5}}$

$$x'_i = \Box_{j:(i,j)\in E} \quad h_{\Theta}(x_i, x_j)$$

invariant function like max or sum

Nearby: with respect to node feature vectors \mathcal{X}_i

Form a local graph by connecting nearby points

PointNet++

Connects k-NN from position of points

EdgeConv

Connects k-NN from feature vectors of points

Does this at each layer

EdgeConv Architecture

Step 1: Form a local graph by connecting nearby points with respect to $\, {\mathcal X}_{i} \,$

Step 2: Update feature vectors

$$x_i \leftarrow x'_i = \Box_{j:(i,j)\in E} \quad h_{\Theta}(x_i, x_j)$$

EdgeConv Architecture

Step 1: Form a local graph by connecting nearby points with respect to $\, \mathscr{X}_{i} \,$

Step 2: Update feature vectors

$$x_i \leftarrow x'_i = \Box_{j:(i,j)\in E} \quad h_{\Theta}(x_i, x_j)$$

iterate

Need to compute a new graph at each stage

EdgeConv Architecture

Step 1: Form a local graph by connecting nearby points with respect to $\, {\mathcal X}_{i} \,$

Step 2: Update feature vectors

$$x_i \leftarrow x'_i = \Box_{j:(i,j)\in E} \quad h_{\Theta}(x_i, x_j)$$

Example

iterate

$$h_{\Theta}(x_i, x_j) = \sigma(\Theta_a \cdot (x_j - x_i) + \Theta_b x_i)$$

Wang et al. "Dynamic Graph CNN for Learning on Point Clouds" ACM Trans. Graph 2019

Wang et al. "Dynamic Graph CNN for Learning on Point Clouds" ACM Trans. Graph 2019

Wang et al. "Dynamic Graph CNN for Learning on Point Clouds" ACM Trans. Graph 2019

Wang et al. "Dynamic Graph CNN for Learning on Point Clouds" ACM Trans. Graph 2019

Point Clouds

PointNet

EdgeConv

Point Transformer

PointNet++

Point Transformers

Based on the idea of attention Attention Is All You Need Attention based architectures Ashish Vaswani* Noam Shazeer* Niki Parmar* gained popularity in NLP and Google Brain Google Brain Google Research avaswani@google.com noam@google.com nikip@google.com **Computer Vision** Llion Jones* Aidan N. Gomez* † Łukasz Kaiser* Google Research University of Toronto Google Brain lukaszkaiser@google.com llion@google.com aidan@cs.toronto.edu 2017 **Image Transformer** Niki Parmar *1 Ashish Vaswani *1 Jakob Uszkoreit 1 Łukasz Kaiser¹ Noam Shazeer¹ Alexander Ku²³ Dustin Tran⁴ Abstract

irrent or The best attention sformer,

2017

Jakob Uszkoreit*

Google Research

usz@google.com

Image generation has been successfully cast as an autoregressive sequence generation or transformation problem. Recent work has shown that self-attention is an effective way of modeling tex-

Attention

Collection of points

Attention	
v_1 \bullet	
v_2 •	
v_i •	
v_j $ullet$	
$v_n \bullet$	Each poir

Each point has a value

Attention $v_1 \bullet k_1$ $v_2 \bullet k_2$ $v_i \bullet k_i$ $v_j \bullet k_j$

 $v_n \bullet k_n$

Each point has a value and a key

In comes a query
$$q$$

Attention	
$v_1 \bullet k_1$	
$v_2 \bullet k_2$	
$v_i \bullet k_i$	
$v_j \bullet k_j$	
$v_n \bullet k_n$	

Query
$$q$$

Output $= v_{i^*}$ $i^* = rg\max_i q^T k_i$

Output value, who's key matches the query

 $v_n \bullet k_n$

Or more like a weighted average

 $v_n \bullet k_n$

How to develop this idea for an architecture over point clouds?

 $\mathcal{V}_n \bullet k_n x_n$

We have position, input features.

 $\mathcal{V}_n \bullet k_n x_n$

Query is a point on the point cloud

Attention to Point Cloud $q = \phi(x_i)$ qQuery $v_1 \bullet k_1$ $v_2 \bullet k_2$ $\mathsf{Output} = \sum \left(q^T k_i \right) \cdot v_i$ $v_i \bullet k_i$ i $v_j \bullet k_j$ $v_i = \alpha(x_i)$ Use trainable functions (MLP) to $k_i = \psi(x_i)$ $v_n \bullet k_n$ obtain key, value, and query from features vectors x_i

Attention to Point Cloud $q = \phi(x_i)$ qQuery $v_1 \bullet k_1$ $v_2 \bullet k_2$ $x'_{j} = \sum \rho(\phi(x_{j})^{T}\psi(x_{i})) \cdot \alpha(x_{i})$ $v_i \bullet k_i$ $v_j \bullet k_j$ $v_i = \alpha(x_i)$ Generates update for point j $k_i = \psi(x_i)$ $v_n \bullet k_n$

Point Transformer

Basic version

$$x'_{j} = \sum_{i \in N(x_{j})} \rho(\phi(x_{j})^{T} \psi(x_{i})) \cdot \alpha(x_{i})$$

Point Transformer

Basic version

$$x'_j = \sum_{i \in N(x_j)} \rho(\phi(x_j)^T \psi(x_i)) \cdot \alpha(x_i)$$

Incorporating point feature + location; and using vector for attention

$$x'_{j} = \sum_{i \in N(x_{j})} \rho[\beta(\phi(x_{j}), \psi(x_{i})) + \delta(p_{j} - p_{i})] \odot \alpha(x_{i})$$
function other than
dot product
position of points

dot product

Point Transformer

Pooing, un-pooling, and residual connections similar to PointNet++
Point Transformer

Object Classification (ModelNet40)

Method	input	mAcc	OA
3DShapeNets [43]	voxel	77.3	84.7
VoxNet [20]	voxel	83.0	85.9
Subvolume [23]	voxel	86.0	89.2
MVCNN [30]	image	_	90.1
PointNet [22]	point	86.2	89.2
PointNet++ [24]	point	_	91.9
SpecGCN [36]	point	_	92.1
PointCNN [18]	point	88.1	92.2
DGCNN [40]	point	90.2	92.2
PointWeb [50]	point	89.4	92.3
SpiderCNN [44]	point	_	92.4
PointConv [42]	point		92.5
KPConv [33]	point	-	92.9
InterpCNN [19]	point	-	93.0
PointTransformer	point	90.6	93.7

Object Part Segmentation (ShapeNetPart Dataset)

Method	cat. mIoU	ins. mIoU
PointNet [22]	80.4	83.7
PointNet++ [24]	81.9	85.1
SPLATNet	83.7	85.4
SpiderCNN [44]	81.7	85.3
PCNN [38]	81.8	85.1
PointCNN [18]	84.6	86.1
DGCNN [40]	82.3	85.1
SGPN [39]	82.8	85.8
PointConv [42]	82.8	85.7
InterpCNN [19]	84.0	86.3
KPConv [33]	85.1	86.4
PointTransformer	83.7	86.6

State-of-the-art @2020

Zhao et al. "Point Transformer" 2020

Point Transformer

Semantic Segmentation on S3DIS Dataset

https://paperswithcode. com/sota/semantic-seg mentation-on-s3dis

State-of-the-art @2020 Zhao et al. "Point Transformer" 2020