N,

UCMERCED

EECS 230 Deep Learning
Lecture 13: Training LLM

Recap: Attention Operation

QK"

Attention(Q, K, V') = softmax(
Vdj;

1%

Recap: Multi-head attention

Scaled Dot-Product Attention Multi-Head Attention
1
4 Linear
MatMul f
) t Concat
SoftMax Aut
f [
Mask (opt.) Scaled Dot-Product o
) Attention
Scale
)
MatMul Linear Linear Linear
Q K V

Recap: From Attention to Transformer Block

A transformer block has
Self Attention: information exchange between tokens
Feed forward network: Information transform within tokens
U E.g. a multi-layer perceptron with 1 hidden layer
U Normalization (Layer normalization)
(JResidual connection

Layer Normalize)

|

|

' Block . :
! esidua !
: connectionGg = Feed£9m3rd g] :
|

: L :
: (Layer Normalize)
|

: |
| |
| |
| |
\ |

Residual
connection

Recap:Transformer-based Large Language Model

Completion Text

A
e _ . \
alr”} the |
b i
| |
Sample from Softmax (..) : (&J%Lu) :
| !
linear layer X — I X — |
e i
: | !
Transformer = ' — :
Blocks : : : : : ' :
= i = |
I
S
|
Input i i
Embeddings § i § i ! [? : [%]
i !
i |
So long and thanks for :/ all | /_1the
N— _

——
Prefix Text

Outline

dTraining LLM

JLLM beyond language modeling
dFine-tuning LLM

Self-supervised training algorithm

dTake a corpus of text as training material
dMinimize cross-entropy loss for next-word prediction

Next word long and thanks for all
1 T
Loss | log Ylong I |: 105 Qandl — 10g Ythanks I |: IOE Yfor | | 108 Yall | res = T Z Leg
1 A t=1

“ocamulary @JE @@ @-@ % g}@

Linear Layer U/ N/ ~_/

Transformer
Block ‘ ‘
4 / A \

Input : : :
Embeddings @) @) @)

So long and thanks for

Training corpora for large language models

Jcommoncrawl.org
Over 250 billion pages spanning 17 years.
(JFree and open corpus since 2007.
L Cited in over 10,000 research papers.
(13-5 billion new pages added each month.

dTraining data for GPT-3

dweb (429 billion tokens)
dsome text from books (67 billion tokens)
dWikipedia (3 billion tokens).

Scaling laws

Cross-entropy loss scales as a power-law with
Umodel size
Udataset size
damount of compute

Larger models require fewer samples

to reach the same performance

Test Loss 10

N—
£

=
2
|
AN

=
S
I
A~

alH o|L =R
N————
§

~—
S

=
a
I
T~

107 109 101
Tokens Processed

Conditional generation using LLM

dMany practical NLP tasks can be cast as word prediction

JFor example, sentiment classification
JThe sentiment of the sentence “I like Jackie Chan” is:

dQuestion answering
JQ: Who wrote the book “The Origin of Species"? A:

JSummarization
JAppend token tl;dr

How large are LLMs?

Creators Year of Training Data (# Model Size (#
release | tokens) parameters)

GPT-2 OpenAl 2019 ~10billion (40GDb) 1.5Dbillion
GPT-3 OpenAl 2020 300 billion 175 billion
(cf. ChatGPT)

PaLM Google 2022 780 billion 540 billion
Chinchilla DeepMind 2022 14 trillion 70 billion
LaMDA Google 2022 1.56 trillion 137 billion
(cf. Bard)

LLaMA Meta 2023 14 trillion 65 billion
LLaMA-2 Meta 2023 2trillion 70 billion

GPT4 OpenAl 2023 ? ?

N,

JCMERCED

Fine-tuning LLM

Few-shot Learning with LLMs

dSuppose you have...

a dataset D = {(xi, yi)},i=1...N, and N is rather small (i.e. few-shot
setting)

Ua very large (billions of parameters) pre-trained language model

dThere are two ways to “learn”

Option A: Supervised fine-tuning

dDefinition: fine-tune the LLM on the training data using...
a standard supervised objective
backpropagation to compute gradients
Wyour favorite optimizer (e.g. Adam)

JPros:

Ufits into the standard ML recipe
Qstill works if N is large

(1Cons:

backpropagation requires ~3x the memory and computation time
as the forward computation

Uyou might not have access to the model weights at all

Option B: In-context learning

A Definition:
1. feed training examples to the LLM as a prompt

2. allow the LLM to infer patterns in the training examples during
inference (i.e. decoding)

3. take the output of the LLM following the prompt as its prediction

(JCons:

U the prompt may be very long and Transformer LMs require O(N2)
time/space where N = length of context

JPros:

no backpropagation required and only one pass through the
training data

ddoes not require model weights, only APl access

Fine-Tuning vs. In-Context Learning

JWhy would we ever bother with fine-tuning if it’s so
inefficient?

JEven for very large LMs, fine-tuning often beats in-context

learning
Method MNLI-m (Val. Acc./%) RTE (Val. Acc./%)
GPT-3 Few-Shot 40.6 69.0
GPT-3 Fine-Tuned 89.5 85.4

Figure from http://arxiv.org/abs/2106.09685

http://arxiv.org/abs/2106.09685

Parameter Efficient Fine-Tuning

JGoal: perform fine-tuning of fewer parameters, but achieve
performance on a downstream task that is comparable to
finetuning of all parameters

dVarious approaches:
Subset: Pick a subset of the parameters and fine-tune only those

JAdapters: add additional layers that have few parameters and tune
only the parameters of those layers, keeping all others fixed

LoRA: learn a small delta for the each of the parameter matrices
with the delta chosen to be low rank

Fine-Tuning the Top Layers Only

dkeep all parameters fixed except for the top K layers

p(w1lhz)
hy hs T hs ha
T S
stop gradient here [Transformer layer J

s.t. error does not 7 TSN o
e |~ 4
backprop to lower
layers

Adapter Module

(JAn adapter layer is simply.a feed :'/ s s :
forward neural network with one O00000]
hidden layer, and a residual connection ! o df' 1 |

QFor input dimension, d, the adapter ! “p'p;°j°°‘) |
layer also has output dimension d, | T i
but bottlenecks to a lower dimension S s,
rin the middle | OO i

| l :
: [Feedforward J :
: down-project :
: [:
. [000000] | !

\ | | /’

Adapter for transformer

K [add & layer norm J<— \ Ry pp——— .

T I" Adapter \‘\
! Layer :
[stepter] . [cooo00] | |
[feed-forward neural net] E]
T : up-project :
| add & layer norm 5 !
i ! :
[adapter] . :
2 : :
[=== | | =
% + - - ~ : down-project i
= Q K \"/ ‘ |
\ [000000] | !
© \\ 1 /’
[N 5 N e e N e e L -
©
3
£
5
e
Wq Wk \%
_ J
N NV J
X
Figure inspired by He et al. (2022)

Adapter Results

Pretrained Model: BERTFLarge

Baseline Method: fine- tune
only the top Klayers of BERT

Large o T
Adapters achieve nearly the -5.
performance (i.e. Godelta) of e

full fine-tuning but with
substantially fewer

GLUE (BERTArGE)

Accuracy delta (%)

parameters
—204 = Adapters .
Sometimes adapters even) I I e o
10° 10° 107 108 10°

outperform full fine-tuning

Num trainable parameters / task

Low-Rank Adaptation (LORA)

JAdapters and related methods introduce inference latency
at test time that is non-trivial

Batch Size 32 16 1
Sequence Length 512 256 128
S] 0.5M 11M 1M
Fine-Tune/LoRA | 1449.440.8 338.0+0.6 19.8+2.7
Adapter" 1482.0+£1.0 (+2.2%) 354.8+0.5 (+5.0%) 23.912.1 (+20.7%)
Adapter" 1492.2+1.0 (+3.0%) 366.3+0.5 (+8.4%) 25.81+2.2 (+30.3%)

Table 1: Infernece latency of a single forward pass in GPT-2 medium measured in milliseconds, av-
eraged over 100 trials. We use an NVIDIA Quadro RTX8000. “|©|” denotes the number of trainable
parameters in dddpter layers. Addpter and AddpterH are two variants of adapter tuning, which we
describe in[Section 3.1. The inference latency introduced by adapter ldyers can be significant in an
online, short- sequence length scenario. See the full study in[Appendix B

Key Idea

* Keep the original pretrained
parameters Wy fixed during
fine-tuning

* Learn an additive
modification to those
parameters AW

* Define AW via a low rank
decomposition:

AW = BA

where BAhas rank r, which is
much less than the input
dimension k or the output
dimension d

Figure inspired by He et al. (2022)

Slide from Matthew Gormley

LoRA

&

Standard Linear Layer
z = Wox

Wo € R4*F x e R¥,ze R4

Z OIT1777171T1]

) GEEEEEENENENEE|

-

N

LoRA Linear Layer

z= Wox + BAx
= (Wo + BA)x

Wo € Rdxk,
A e R"*k Be RI*r
where r << min(d, k)

Initialization
 \Weinitialize the trainable
parameters:
Ai; ~ N(0,0%),Vi,j
B=20

* This ensures that, at the start
of fine tuning, the
parameters have their
pretrained values:

AW =BA =0
Wo + BA = Wo

Figure inspired by He et al. (2022)

Slide from Matthew Gormley

LoRA

&

Standard Linear Layer

z = Wox

" k
WOERd k,xeR .z€ R

Z OIT1777171T1]

‘ -

) GEEEEEENENENEE|

-

N

z= Wpx + BAx
= (Wo + BA)x

Wo € Rd><k,
A e R"*k Be RI*r
where r << min(d, k)

LoRA Linear Layer

Transformer Layer

f [add & layer norm]4— \
(feed-forward neural net]
j
[add & layer norm]4— \
/ X" = concat(X'V,. .., x!")
_ . . I
£ , () (KT ,
1 A X0 = softmax > \Q;_ R VERVID
g : k
- g Q) = Xwa@)
S £ q
LK = xw)
g
V) = XW)
\ J v
- T
X = [X1,...,XN]
o J
Figure inspired by He et al. (2022) S

Slide from Matthew Gormley

LoRA for Transformer

4 [edd&layernorm Je— 0. LoRA linear layers could replace every linear layer in the
Transformer layer
[e ————] « But the original paper only applies LoRA to the attention
1 weights
[add & layer norm]4—
‘éf s] ~ 4 LoRA Linear Layer q)
£ attention
IS z= Wox + BAx —L
Z = (Wo + BA)x
:
Wo € Rd><k,
. J
S j A e R"*k Be RI*r
where r << min(d, k) ' Nk '
o - 4 J
Figure inspired by He et al. (2022) 0

Slide from Matthew Gormley

LoRA for Transformer

4 [edd&layernorm Je— 0. LoRA linear layers could replace every linear layer in the
Transformer layer
[e T] « But the original paper only applies LoRA to the attention
1 weights
[add & layer norm]4—
5 . . | Q = LoRALinear(X; Wy, A¢,By) (~ LoRA Linea Layer)
g e) K = LoRALinear(X; Wk, A, B;)
3 V = LoRALinear(X; W., Ay, By)
:
-)

Figure inspired by He et al. (2022)

Slide from Matthew Gormley

‘ LoRA for Transformer

T cnmmn N . I._oRAllnear.Iayers could replace every
linear layer in the Transformer layer

* But the original paper only applies LORA
[feedfomardneurainet] to the attention weights

(_eda@mmpernom Je— » Empirically, for GPT-3, they also find that it is
most efficient to include LoRA only on the
™ query and key linear layers:

attention]

transformer

| # of Trainable Parameters = 18M

Weight Type W, ,, U;\ W, Wo Wo,W, W,W, W,Wi, W, W,
Rank r 8 8 4 4 2

WikiSQL (£0.5%) | 704 70.0 73.0 73.2 714 73.7 73.7
MultiNLI (£0.1%) | 91.0 90.8 91.0 91.3 913 913 91.7

multi-headed

) Table 5: Validation accuracy on WikiSQL and MultiNLI after applying LoRA to different types of
_/ attention weights in GPT-3, given the same number of trainable parameters. Adapting both W, and
W, gives the best performance overall. We find the standard deviation across random seeds to be
consistent for a given dataset, which we report in the first column.

4
Table from http://arxiv.org/abs/2106.09685 2

Slide from Matthew Gormley

http://arxiv.org/abs/2106.09685

Summary

dTraining LLM

dParameter-efficient Fine-tuning
dSubset
JAdaptor
QLoRA

