
EECS 230 Deep Learning
Lecture 13: Training LLM

Recap: Attention Operation

Recap: Multi-head attention

Recap: From Attention to Transformer Block

qA transformer block has
qSelf Attention: information exchange between tokens
qFeed forward network: Information transform within tokens

qE.g. a multi-layer perceptron with 1 hidden layer
qNormalization (Layer normalization)
qResidual connection

Recap:Transformer-based Large Language Model

Outline

qTraining LLM
qLLM beyond language modeling
qFine-tuning LLM

Self-supervised training algorithm

qTake a corpus of text as training material
qMinimize cross-entropy loss for next-word prediction

Training corpora for large language models

qcommoncrawl.org
qOver 250 billion pages spanning 17 years.
qFree and open corpus since 2007.
qCited in over 10,000 research papers.
q3–5 billion new pages added each month.

qTraining data for GPT-3
qweb (429 billion tokens)
qsome text from books (67 billion tokens)
qWikipedia (3 billion tokens).

Scaling laws

qCross-entropy loss scales as a power-law with
qmodel size
qdataset size
qamount of compute

Conditional generation using LLM

qMany practical NLP tasks can be cast as word prediction
qFor example, sentiment classification

qThe sentiment of the sentence “I like Jackie Chan” is:

qQuestion answering
qQ: Who wrote the book ‘‘The Origin of Species"? A:

qSummarization
qAppend token tl;dr

How large are LLMs?

Model Creators Year of
release

Training Data (#
tokens)

Model Size (#
parameters)

GPT-2 OpenAI 2019 ~10billion (40Gb) 1.5billion
GPT-3
(cf. ChatGPT)

OpenAI 2020 300 billion 175billion

PaLM Google 2022 780 billion 540 billion
Chinchilla DeepMind 2022 1.4 trillion 70 billion
LaMDA
(cf. Bard)

Google 2022 1.56 trillion 137billion

LLaMA Meta 2023 1.4 trillion 65 billion
LLaMA-2 Meta 2023 2trillion 70 billion
GPT-4 OpenAI 2023 ? ?

Fine-tuning LLM

Few-shot Learning with LLMs

qSuppose you have…
qa dataset D = {(xi, yi)},i=1…N, and N is rather small (i.e. few-shot

setting)
qa very large (billions of parameters) pre-trained language model

qThere are two ways to “learn”

Option A: Supervised fine-tuning

qDefinition: fine-tune the LLM on the training data using…
qa standard supervised objective
qbackpropagation to compute gradients
qyour favorite optimizer (e.g. Adam)

qPros:
qfits into the standard ML recipe
qstill works if N is large

qCons:
qbackpropagation requires ~3x the memory and computation time

as the forward computation
qyou might not have access to the model weights at all

Option B: In-context learning

qDefinition:
q1. feed training examples to the LLM as a prompt
q2. allow the LLM to infer patterns in the training examples during

inference (i.e. decoding)
q3. take the output of the LLM following the prompt as its prediction

qCons:
q the prompt may be very long and Transformer LMs require O(N2)

time/space where N = length of context

qPros:
qno backpropagation required and only one pass through the

training data
qdoes not require model weights, only API access

Fine-Tuning vs. In-Context Learning

qWhy would we ever bother with fine-tuning if it’s so
inefficient?

qEven for very large LMs, fine-tuning often beats in-context
learning

Figure from http://arxiv.org/abs/2106.09685

http://arxiv.org/abs/2106.09685

Parameter Efficient Fine-Tuning

qGoal: perform fine-tuning of fewer parameters, but achieve
performance on a downstream task that is comparable to
finetuning of all parameters

qVarious approaches:
qSubset: Pick a subset of the parameters and fine-tune only those
qAdapters: add additional layers that have few parameters and tune

only the parameters of those layers, keeping all others fixed
qLoRA: learn a small delta for the each of the parameter matrices

with the delta chosen to be low rank

Fine-Tuning the Top Layers Only

qkeep all parameters fixed except for the top K layers

h1 h3 h4

Transformer layer

Transformer layer

Transformer layer

x1 x2 x3 x4

[CLS] [MASK] cat sat

h2

p(w1|h2)

stop gradient here
s.t. error does not
backprop to lower

layers

Adapter Module

qAn adapter layer is simply a feed
forward neural network with one
hidden layer, and a residual connection

qFor input dimension, d, the adapter
layer also has output dimension d,
but bottlenecks to a lower dimension
r in the middle

d

d

r

Adapter for transformer

Figure inspired by Heet al. (2022)

m
ul
ti-
he
ad
ed

add & layer norm

WkWq Wv

X

Q K V

⨉ ⨉ ⨉

attention

adapter

feed-forward neural net

add & layer norm

adapter

tra
ns
fo
rm
er

X’

Adapter Results

• PretrainedModel: BERT-Large
• BaselineMethod: fine- tune

only the top Klayers of BERT-
Large

• Adapters achieve nearly the
performance (i.e. 0%delta) of
full fine-tuning but with
substantially fewer
parameters

• Sometimes adapters even
outperform full fine-tuning

Low-Rank Adaptation (LORA)

qAdapters and related methods introduce inference latency
at test time that is non-trivial

LoRA
KeyIdea
• Keep the original pretrained

parameters W0 fixed during
fine-tuning

• Learn an additive
modification to those
parameters ΔW

• Define ΔW via a low rank
decomposition:

∆W = BA

whereBAhas rank r, which is
much less than the input
dimension k or the output
dimension d

z = W0x + BAx
= (W0 + BA)x

LoRA Linear Layer

z = W0x
Standard Linear Layer

x

z

W0

Linear
Linear

B

LinearA

d

r

x

z

W0

where r << min(d, k) k
3
5Figure inspired byHeet al. (2022)

Linear

W0 ∈ Rd× k k, x ∈ R , z ∈ Rd

W0 ∈ Rd× k ,

A ∈ R r × k , B ∈ Rd× r

Slide from Matthew Gormley

LoRA
Initialization

0z = W x + BAx
= (W0 + BA)x

LoRA Linear Layer

z = W0x
Standard Linear Layer

x

z

W0

Linear
Linear

B

LinearA

d

r

x

z

W0

where r << min(d, k) k
3
6Figure inspired byHeet al. (2022)

Linear

W 0 ∈ R d× k k d
, x ∈ R , z ∈ R

W0 ∈ Rd× k ,

A ∈ R r × k , B ∈ Rd× r

2

• We initialize the trainable
parameters:
A i j ∼ N (0, σ), ∀i, j
B = 0

• This ensures that, at the start
of fine tuning, the
parameters have their
pretrained values:

∆W = BA = 0
W0 + BA = W0

Slide from Matthew Gormley

Transformer Layer

m
ul
ti-
he
ad
ed

add & layer norm

WkWq Wv

X

Q K V

⨉ ⨉ ⨉

attention

feed-forward neural net

add & layer norm

tra
ns
fo
rm
er

X’

l (i)X = softmax
(
Q (K)(i) (i) T

√dk

l
+ M V (i)

T
X = [x1,. .. , xN]

Q(i) = XW (i)
q

V (i) = XW (i)
v

(i)K = XW (i)
k

XII = concat(X I(1) I (h), . . . , X)

m
ul
ti-
he
ad
ed
at
te
nt
io
n

3
9Figure inspired byHeet al. (2022)

Slide from Matthew Gormley

LoRA for Transformer
• LoRA linear layers could replace every linear layer in the

Transformer layer
• But the original paper only applies LoRA to the attention

weights

m
ul
ti-
he
ad
ed

add & layer norm

X

Q K V

attention

feed-forward neural net

add & layer norm

⨉

＋
Wq

Lo
RA

Lo
RA

⨉

＋
Wk

tra
ns
fo
rm
er

X’

⨉

＋
Wv

z = W0x + BAx
= (W0 + BA)x

LoRA Linear Layer

x

z

W0

Linear
Linear

B

LinearA

k

d

r

W0 ∈ Rd× k ,

A ∈ R r × k , B ∈ Rd× r

where r << min(d, k)

Lo
RA

4
0Figure inspired byHeet al. (2022)

Slide from Matthew Gormley

LoRA for Transformer
• LoRA linear layers could replace every linear layer in the

Transformer layer
• But the original paper only applies LoRA to the attention

weights

m
ul
ti-
he
ad
ed

add & layer norm

X

Q K V

attention

feed-forward neural net

add & layer norm

⨉

＋
Wq

Lo
RA

Lo
RA

⨉

＋
Wk

tra
ns
fo
rm
er

X’

⨉

＋
Wv

x

z

W0

Linear
Linear

B

LinearA

LoRA Linea Layer
d

r

Lo
RA

Q = LoRALinear(X;Wq ,Aq ,Bq)

k
4
1Figure inspired byHeet al. (2022)

kK = LoRALinear(X;W k , Ak , B)
V = LoRALinear(X;W v ,Av ,Bv)

Slide from Matthew Gormley

LoRA for Transformer
• LoRA linear layers could replace every

linear layer in the Transformer layer
• But the original paper only applies LoRA

to the attention weights
• Empirically, for GPT-3, they also find that it is

most efficient to include LoRAonly on the
query andkey linear layers:

m
ul
ti-
he
ad
ed

add & layer norm

Wv

X

Q K V

⨉

attention

feed-forward neural net

add & layer norm

⨉

＋
Wq

Lo
RA

Lo
RA

⨉

＋
Wk

tra
ns
fo
rm
er

X’

4
2Table from http://arxiv.org/abs/2106.09685

Slide from Matthew Gormley

http://arxiv.org/abs/2106.09685

Summary

qTraining LLM
qParameter-efficient Fine-tuning

qSubset
qAdaptor
qLoRA

