

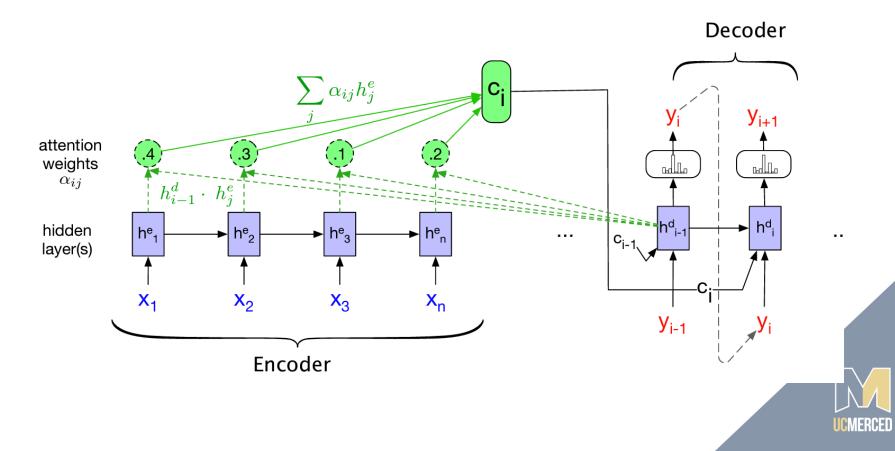
EECS 230 Deep Learning Lecture 12: Transformer and LLM

Credit to Daniel Jurafsky for figures of network architectures

Recap: RNN with Attention

Each output in decoder accesses all the hidden states from the encoder, not just the last state

Each output attends to all input



Transformer: The intuition

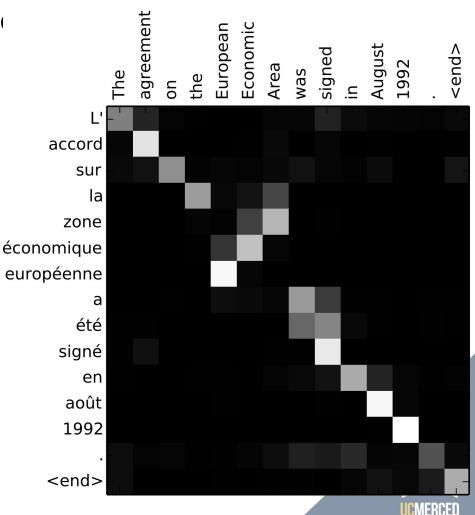
Context matters for natural language understanding

Ger example:

- The chicken crossed the road because it wanted to get to the other side
- □ I walked along the **pond**, and noticed that one of the trees along the **bank** had fallen into the **water** after the storm.

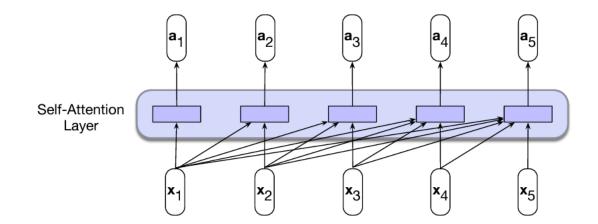
Attention weights between words

Example: English to French translation
 Input: "The agreement on the European Economic Area was signed in August 1992."
 Output: "L'accord sur la zone économique européenne a été signé en août 1992."



Casual or backward-looking self-attention

Attends to all the inputs up to, and including, the current one



Self-attention

Uversion 1:

$$\operatorname{score}(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{x}_i \cdot \mathbf{x}_j$$

$$\alpha_{ij} = \operatorname{softmax}(\operatorname{score}(\mathbf{x}_i, \mathbf{x}_j)) \quad \forall j \le i$$
$$= \frac{\exp(\operatorname{score}(\mathbf{x}_i, \mathbf{x}_j))}{\sum_{k=1}^{i} \exp(\operatorname{score}(\mathbf{x}_i, \mathbf{x}_k))} \quad \forall j \le i$$

$$\mathbf{a}_i \;=\; \sum_{j\leq i} lpha_{ij} \mathbf{x}_j$$

Query, Key, and Value

□Query: the current focus of attention when being compared to all of the other preceding inputs.

Key: a preceding input being compared to the current focusValue: used to compute the output for the current focus

$$\mathbf{q}_i = \mathbf{x}_i \mathbf{W}^{\mathbf{Q}}; \ \mathbf{k}_i = \mathbf{x}_i \mathbf{W}^{\mathbf{K}}; \ \mathbf{v}_i = \mathbf{x}_i \mathbf{W}^{\mathbf{V}}$$

□Version 2:

$$\operatorname{score}(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{q}_i \cdot \mathbf{k}_j$$

$$\mathbf{a}_i = \sum_{j \leq i} lpha_{ij} \mathbf{v}_j$$

Self-attention

□ Final Version

$$\mathbf{q}_{i} = \mathbf{x}_{i} \mathbf{W}^{\mathbf{Q}}; \mathbf{k}_{i} = \mathbf{x}_{i} \mathbf{W}^{\mathbf{K}}; \mathbf{v}_{i} = \mathbf{x}_{i} \mathbf{W}^{\mathbf{V}}$$

$$\operatorname{score}(\mathbf{x}_{i}, \mathbf{x}_{j}) = \frac{\mathbf{q}_{i} \cdot \mathbf{k}_{j}}{\sqrt{d_{k}}}$$

$$\alpha_{ij} = \operatorname{softmax}(\operatorname{score}(\mathbf{x}_{i}, \mathbf{x}_{j})) \quad \forall j \leq i$$

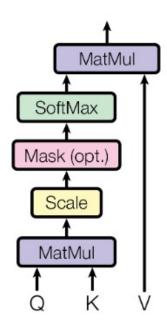
$$\mathbf{a}_{i} = \sum_{j \leq i} \alpha_{ij} \mathbf{v}_{j}$$

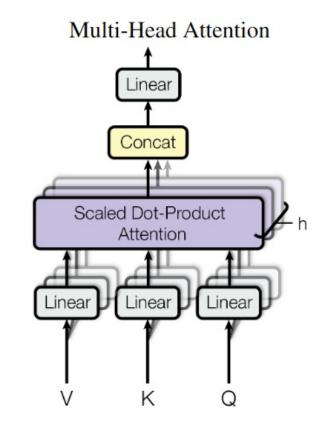
Attention Operation

$\operatorname{Attention}(Q,K,V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$

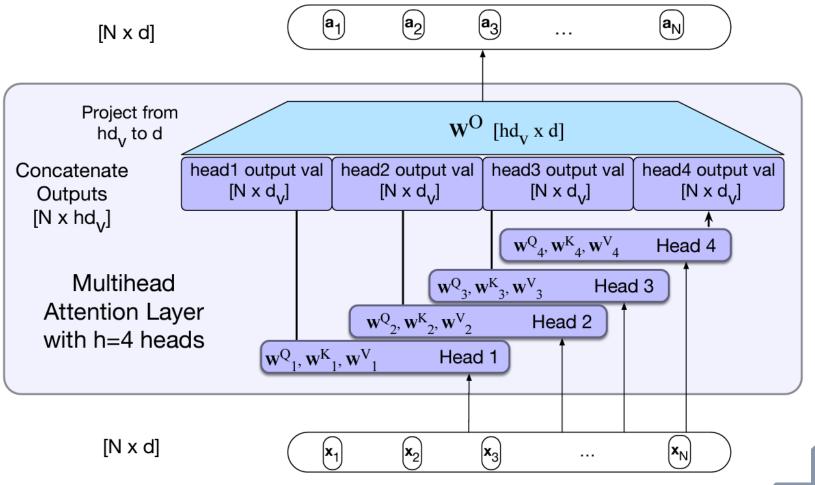
Multi-head attention

Scaled Dot-Product Attention





Multi-head attention



Self attention v.s. Cross attention

Self Attention

Given the same set of tokens

Cross Attention

□Key, and Value from one set of tokens

□Query from another set of tokens

□E.g. words in one language pay attention to words in another.

From Attention to Transformer Block

A transformer block has

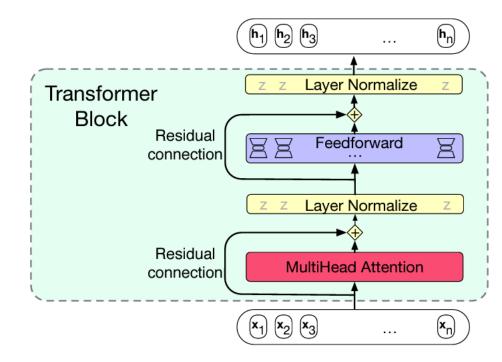
□**Self Attention**: information exchange between tokens

Feed forward network: Information transform within tokens

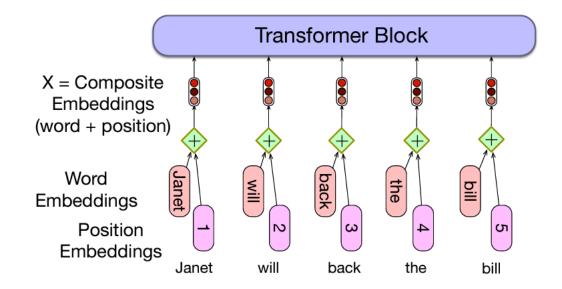
E.g. a multi-layer perceptron with 1 hidden layer

Normalization (Layer normalization)

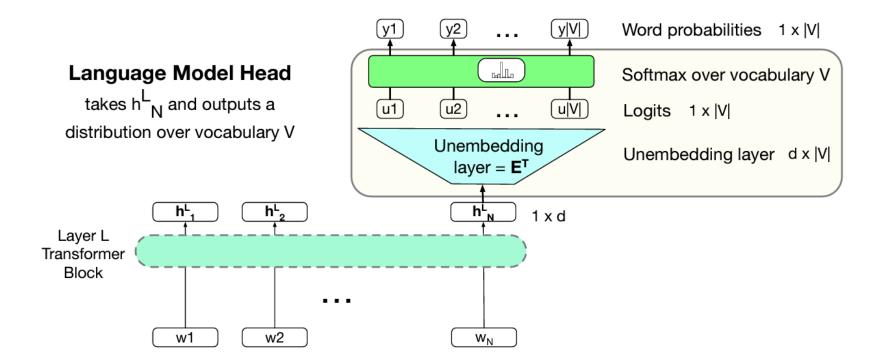
Residual connection



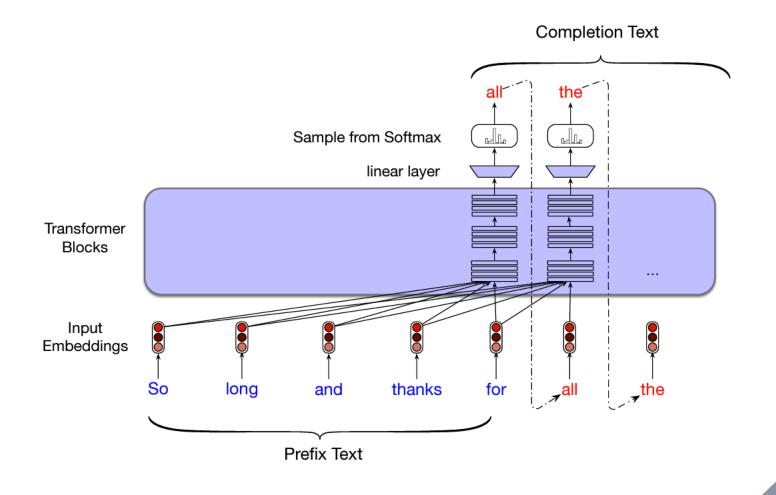
Embedding for token and position



Language Model Head



Transformer-based Large Language Model



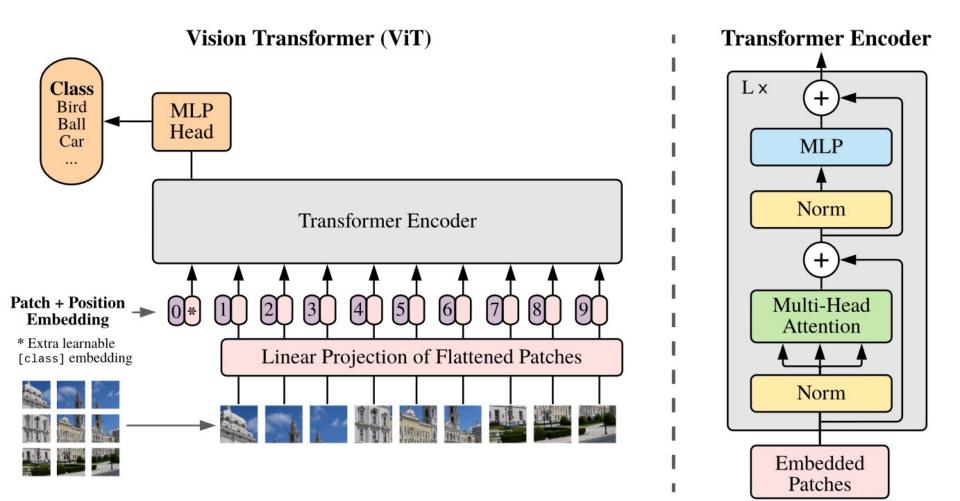
Preprint. Under review.

AN IMAGE IS WORTH 16x16 WORDS: TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE

Alexey Dosovitskiy^{*,†}, Lucas Beyer^{*}, Alexander Kolesnikov^{*}, Dirk Weissenborn^{*}, Xiaohua Zhai^{*}, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby^{*,†} ^{*}equal technical contribution, [†]equal advising Google Research, Brain Team {adosovitskiy, neilhoulsby}@google.com

ABSTRACT

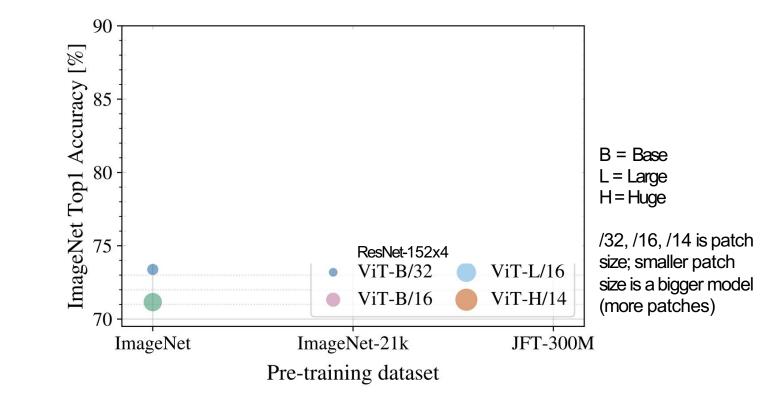
While the Transformer architecture has become the de-facto standard for natural language processing tasks, its applications to computer vision remain limited. In vision, attention is either applied in conjunction with convolutional networks, or used to replace certain components of convolutional networks while keeping their overall structure in place. We show that this reliance on CNNs is not necessary and a pure transformer applied directly to sequences of image patches can perform very well on image classification tasks. When pre-trained on large amounts of data and transferred to multiple mid-sized or small image recognition benchmarks (ImageNet, CIFAR-100, VTAB, etc.), Vision Transformer (ViT) attains excellent results compared to state-of-the-art convolutional networks while requiring sub-stantially fewer computational resources to train.



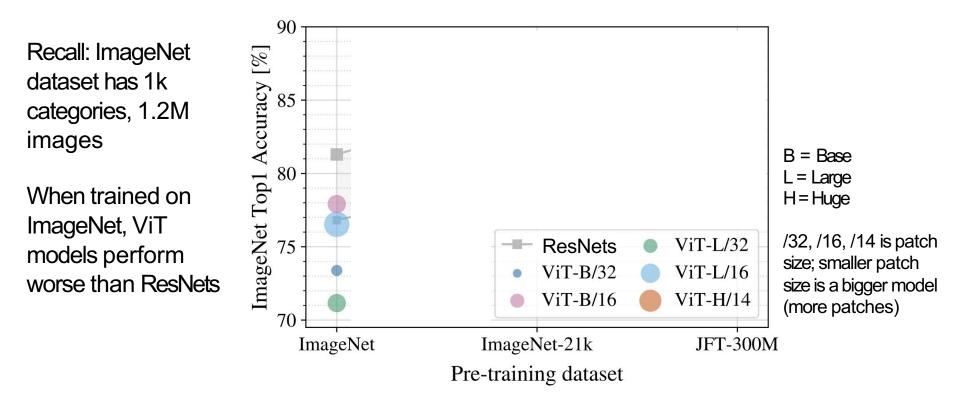
Model	Layers	Hidden size D	MLP size	Heads	Params
ViT-Base	12	768	3072	12	86M
ViT-Large	24	1024	4096	16	307M
ViT-Huge	32	1280	5120	16	632M

Table 1: Details of Vision Transformer model variants.

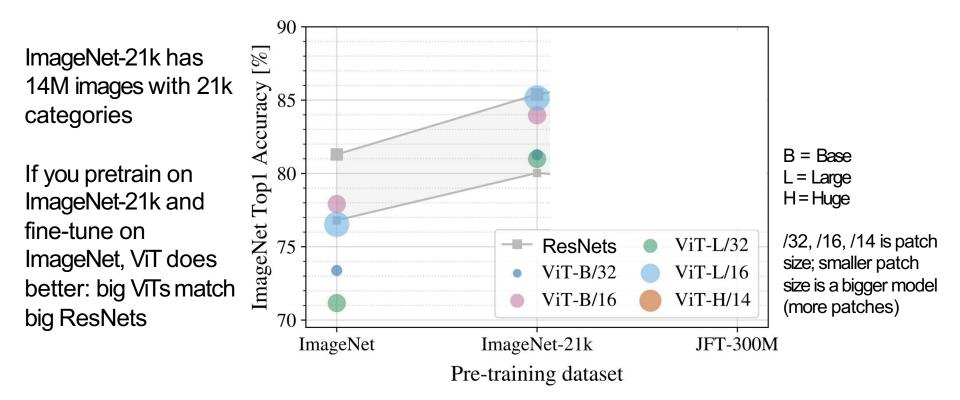
	Ours-JFT (ViT-H/14)	Ours-JFT (ViT-L/16)	Ours-I21K (ViT-L/16)	BiT-L (ResNet152x4)	Noisy Student (EfficientNet-L2)
ImageNet	88.55 ± 0.04	87.76 ± 0.03	85.30 ± 0.02	87.54 ± 0.02	$88.4/88.5^*$
ImageNet ReaL	90.72 ± 0.05	90.54 ± 0.03	88.62 ± 0.05	90.54	90.55
CIFAR-10	99.50 ± 0.06	99.42 ± 0.03	99.15 ± 0.03	99.37 ± 0.06	_
CIFAR-100	94.55 ± 0.04	93.90 ± 0.05	93.25 ± 0.05	93.51 ± 0.08	—
Oxford-IIIT Pets	97.56 ± 0.03	97.32 ± 0.11	94.67 ± 0.15	96.62 ± 0.23	_
Oxford Flowers-102	99.68 ± 0.02	99.74 ± 0.00	99.61 ± 0.02	99.63 ± 0.03	_
VTAB (19 tasks)	77.63 ± 0.23	76.28 ± 0.46	72.72 ± 0.21	76.29 ± 1.70	_
TPUv3-core-days	2.5k	0.68k	0.23k	9.9k	12.3k



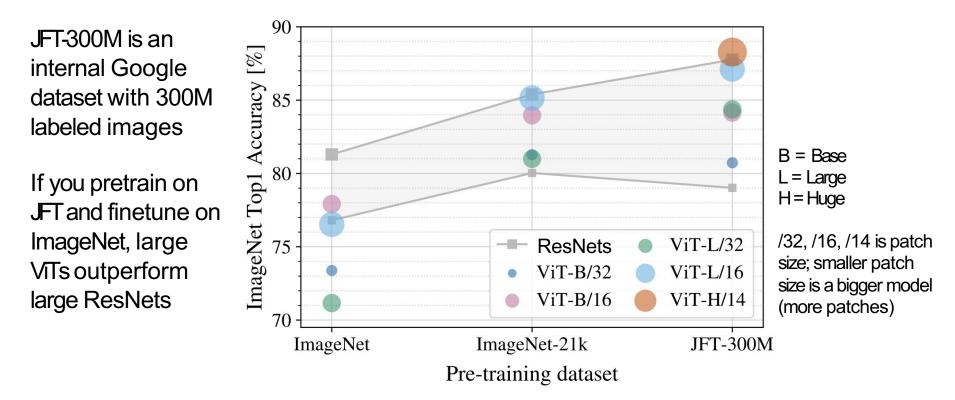
Dosovitskiy et al, "An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale", ICLR 2021



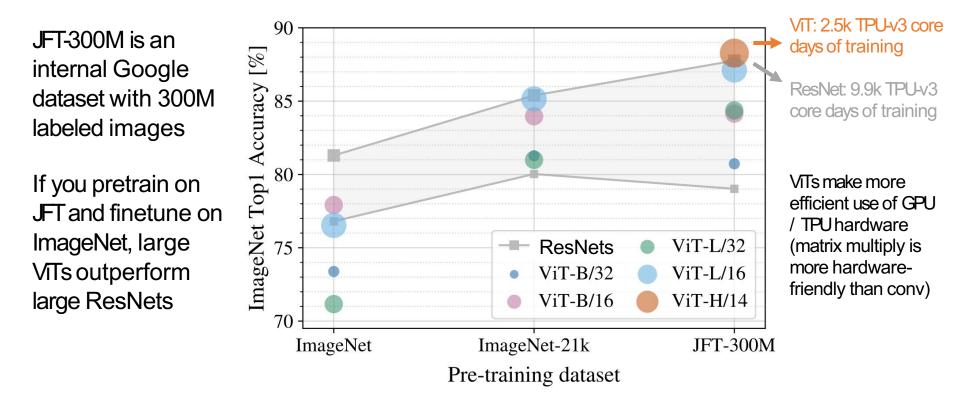
Dosovitskiy et al, "An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale", ICLR 2021



Dosovitskiy et al, "An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale", ICLR 2021



Dosovitskiy et al, "An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale", ICLR 2021



Dosovitskiy et al, "An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale", ICLR 2021