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Credit to Daniel Jurafsky for figures of network architectures



Recap: RNN with Attention

JEach output in decoder accesses all the hidden states from
the encoder, not just the last state

(JEach output attends to all input
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Transformer: The intuition

dContext matters for natural language understanding

JFor example:
The chicken crossed the road because it wanted to get to the other
side
U1 walked along the pond, and noticed that one of the trees along
the bank had fallen into the water after the storm.




Attention weights between words

JExample: English to French translation
dinput: “The agreement on th:
European Economic Area was
sighed in August 1992

accord

dOutput: “L'accord sur la zone sur
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Casual or backward-looking self-attention

JAttends to all the inputs up to, and including, the current
one

Self-Attention
Layer




Self-attention

dVersion 1:
score(X;,Xj) = X;-X;
o;; = softmax(score(x;,x;)) Vj<i

exp(score(x;,X;))

Z;;:l exp(score(X;, X))

a;, = E a,'ij

J<i

Vj<i




Query, Key, and Value

JQuery: the current focus of attention when being compared
to all of the other preceding inputs.

dKey: a preceding input being compared to the current focus
dValue: used to compute the output for the current focus

q; = x;W9; k; = x;WK; v; =x;W"

dVersion 2:
score(X;,Xj) = q;-k;
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Self-attention

Final Version

q; = xWhk; = xWSv; =x;wWVY

score(X;,X;) = 9 K;
Vi
0;; = softmax(score(x;,x;)) Vj <i

a;, = E (X,'jVj

J<i




Attention Operation

QK"
vy

Attention(Q, K, V') = softmax(
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Multi-head attention

Scaled Dot-Product Attention Multi-Head Attention
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Multi-head attention
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Self attention v.s. Cross attention

dSelf Attention
Key, Value, and Query from the same set of tokens

dCross Attention
Key, and Value from one set of tokens
dQuery from another set of tokens
E.g. words in one language pay attention to words in another.




From Attention to Transformer Block

A transformer block has
Self Attention: information exchange between tokens
Feed forward network: Information transform within tokens
U E.g. a multi-layer perceptron with 1 hidden layer
U Normalization (Layer normalization)
(JResidual connection

( Layer Normalize )
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Embedding for token and position

( Transformer Block )
X = Composite ) )
Embeddings g g @ i
(word + position)
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Language Model Head

P @ .

Word probabilities 1 x |V|

Language Model Head [ (ol )

L
takes h™\, and outputs a b b

distribution over vocabulary V

Unembedding

Softmax over vocabulary V

Logits 1x|V|

Unembedding layer dx|V|
J

Layer L
Transformer !
Block




Transformer-based Large Language Model
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Preprint. Under review.

AN IMAGE 1S WORTH 16X16 WORDS:
TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE

Alexey Dosovitskiy*t, Lucas Beyer*, Alexander Kolesnikov*, Dirk Weissenborn*,
Xiaohua Zhai*, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer,
Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby*f
*equal technical contribution, fequal advising
Google Research, Brain Team
{adosovitskiy, neilhoulsby}@google.com

ABSTRACT

While the Transformer architecture has become the de-facto standard for natural
language processing tasks, its applications to computer vision remain limited. In
vision, attention is either applied in conjunction with convolutional networks, or
used to replace certain components of convolutional networks while keeping their
overall structure in place. We show that this reliance on CNNs is not necessary
and a pure transformer applied directly to sequences of image patches can perform
very well on image classification tasks. When pre-trained on large amounts of
data and transferred to multiple mid-sized or small image recognition benchmarks
(ImageNet, CIFAR-100, VTAB, etc.), Vision Transformer (ViT) attains excellent
results compared to state-of-the-art convolutional networks while requiring sub-
stantially fewer computational resources to trainEl







Transformer Encoder
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Layers Hiddensize D MLPsize Heads Params
ViT-Base 12 768 3072 12 86M
ViT-Large 24 1024 4096 16 307M
ViT-Huge 32 1280 5120 16 632M

Table 1: Details of Vision Transformer model variants.

Ours-JFT Ours-JFT Ours-121K BiT-L Noisy Student

(ViT-H/14)  (ViT-L/16)  (ViT-L/16) (ResNetl152x4) (EfficientNet-L2)
ImageNet 88.55+0.04 87.76+0.03 85.30+0.02 87.5440.02 88.4/88.5*
ImageNet RealL 90.72+0.05 90.54+0.03 88.62+0.05 90.54 90.55
CIFAR-10 99.50+0.06 99.42+0.03 99.15+0.03 99.37 +0.06 —
CIFAR-100 94.55+0.04  93.90+0.05 93.25+0.05 93.51+0.08 —
Oxford-IIIT Pets 97.56 +0.03 97.32+0.11  94.67+0.15 96.62 +0.23 —
Oxford Flowers-102  99.68 +0.02 99.74+0.00 99.61 +0.02 99.63 +0.03 —
VTAB (19 tasks) 77.63+0.23 76.28+046 72.72+0.21 76.29+1.70 —
TPUv3-core-days 2.5k 0.68k 0.23k 9.9k 12.3k




Vision Transformer (ViT) vs ResNets
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Vision Transformer (ViT) vs ResNets
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Vision Transformer (ViT) vs ResNets
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Vision Transformer (ViT) vs ResNets
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Vision Transformer (ViT) vs ResNets
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