N,

UCMERCED

EECS 230 Deep Learning
Lecture 11: RNN and LSTM

Credit to Daniel Jurafsky for figures of network architectures

Recap: Language models

Many NLP tasks require natural language output:
—Machine translation
—Speech recognition
—Natural language generation
—Spell-checking

Language models define probability distributions

over (natural language) strings or sentences.

- We can use a language model to generate strings
-> We can use a language model to score/rank candidate strings
so that we can choose the best (i.e. most likely) one:

if PLM(A) > PLm(B), return A, not B

Recap: N-gram Language model

N-gram models assume each word (event)

depends only on the previous n-1 words (events):
N

Unigram model: P(w" ... w™) = M Pw®)
i=1
N
Bigram model: P(w™" ... w") = M Pw® | wt=1y
i=1
N . . .
Trigram model: P(w™ ... wd¥)) = M Pow® | wlt=h wi=2)y

=1

Independence assumptions where the n-th event in a sequence depends
only on the last n-1 events are called Markov assumptions (of order n—1).

Recap: Learning a language model

We need (a large amount of) text as training data
to estimate the parameters of a language model.

The most basic parameter estimation technique:

relative frequency estimation (frequency = counts)
Pw® = ‘the’| wi-) = ‘on’) = C(‘on the’)/ C(‘on’)

Also called Maximum Likelihood Estimation (MLE)

Recap: Word Embedding

expect =

(0286)

0.792
-0.177
-0.107

0.109
-0.542

0.349

0.271

0.487

need help
come
go
take
give keep
make get
meet cee continue
expect want become
think
say remain
are .
is
be
wergas
being
been
haq1as

have

Recap: Word2Vec Overview

JExample windows and process for computing P(Wt+j | wy)

P(Wi—z | W) P(Weyo | We)
P(we_q | we) P(Wey1 | we)

problems turning banking crises as

\ Y , \—Y—} L Y J
outside context words center word outside context words
in window of size 2 at positiont in window of size 2

Recap: Word2Vec Objective Function

For each positiont = 1, ..., T, predict context words within a
window of fixed size m, given center word w;. Data likelihood:

T
Likelihood = L(8) = l l l l P(Wey; | we; 0)
t=1 —ms<js<m
6 is all variables ‘ J#0
to be optimized
1 sometimes called a cost or loss function

The objective function J(8) is the (average) negative log likelihood:

1
J(0) = —=log L(0) = — Z Z log P(wes; | we; 6)

t= —m<]<m
Jj#0

Minimizing objective function & Maximizing predictive accuracy

Our first neural net for NLP:

A neural n-gram model

Given a fixed-size vocabulary V, an n-gram model
predicts the probability of the n-th word
following the preceding n—1 words:

PO | wl=-1 w=2) - ypi=(n=1))
How can we model this with a neural net?
— Input layer: concatenate n—1 word vectors
— Output layer: a softmax over VI units

— Feedforward network

Outline

JRecurrent Neural Network
(JRNNSs as Language Models
(JRNNs for other NLP tasks
(JStaked and Bi-directional RNN
ALSTM

(JEncoder-decoder model

Recurrent Neural Network

dTemporal nature in language processing

(JRNN deals with sequential input data stream like language.

))
\—/ —

A simple RNN

A Simple Recurrent Neural Network

(ARNN illustrated as a feed-forward network

h, = g(Uh,_; +Wx,) ()
Y. =f(Vh,) \ Vv /
C)

A Simple Recurrent Neural Network

(JRNN unrolled in time

h, = g(Uh._, +Wx,) W
Y. =f(Vh,)

How to optimize Recurrent Neural Network?

C v3)

h, = g(Uh,_; +WXx;)

v
C ¥o) (hs)
v T w
= Vh %
y:=f(Vh;) (v;) h2 %
v w
hy C X9)
w
X4)

/-

Cho) (

(dBackpropagation through time

0Ly _ OL; ohy OL; ohy ohy L ohy oh, o,
OW 0h; OW oh; oh, OW oh; oh, oh, oW

oL Ixa~w 0L | v 9y | oh
w253 % | 2

t=1 k=1 1t \ j=k+1 -1

Truncated backpropagation through time

(dBackpropagation is very expensive for long sequences

Loss

JTTIN

L T T R T I T N T T I NI N I N I)

R e R R I N N I D)

<

JRun forward and backward through chunks of the sequence
instead of whole sequence

RNNs as Language Models

dLanguage models predict the next word in a sequence given
some preceding context.

P(fish | Thanks for all the)

(JRNN Language Model

2) b)
TG
e o D B

/T

(*t-2) (- (X) Cx)

Training an RNN Language Model

dMaximum likelihood estimation

Next word long and thanks for all
| 1 l | IT
Loss | =108 Yiong| [= 108 Yand| |—logYthanks | [= 10 Yfor| |— 1O Yall e Z Leg
/ A A

Gomwor (o) () Co) Gl) C)

Vocabulary vh

h
RNN - - - -

- nn
\ A \ A \ \ /

Input e
Embeddings
So

long and thanks for

Generation with RNN Language Model

JAutoregressive (casual) generation

dUnlike teacher forcing during training

-~

e
7

Sampled Word So

Softmax

I
I
I
|
|
|
|
|
|
|
|
RNN :
|
|
|
I
I
I
|
|
|

e
7

long

and
A

(aln)

i

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| ong
|
\

Y

*
Embedding ?]

Input Word <S> L
/
/

\7 7/

RNNs for other NLP tasks

JRNN for sequence classification

JCommonly called text classification, like sentiment analysis
or spam detection

[Soﬁmax)

N\ /
(FFN)

Stacked RNN

dOutputs from one RNN as an input sequence to another one

Bidirectional RNN

JTwo independent RNN, one forward, another backward

Yq Yo Y3 Yn
O‘) concatenated
’»8‘ F’H‘ »U outputs 08‘7
< < < RNN 2
> > RNN 1

Bidirectional RNN for sequence classification

(JCombine hidden states from first & last word

| Softmax)
N__
(FFN>
L\
C X)
— ' o
h,] h,
hy< - - RNN 2
5 g RNN 1

Vanishing/exploding gradients

Consider the gradient of L, at step t, with respect to the
hidden state h, at some previous step k (k<t):

(\
oL, oL, oh,

Ohy — ohy | S, oy

(JRecurrent multiplication

dGradients too small (vanishing gradient) or too large
(exploding gradient)

Exploding gradients

JWhat is the problem?
JWe take a very large step in SGD
dSolution: Gradient clipping

Algorithm 1 Pseudo-code for norm clipping

&+ 3
if ||g|| > threshold then

A threshold »
< .
& el &

end if

Vanishing gradients

JWhat is the problem?

(JParameters barely get updated (no learning)

1Solution:

ULSTMs: Long short-term memory networks
L GRUs: Gated recurrent units

Local vs distant information

(JHidden states tend to contain local information
(JBut distant information is critical
“The flights the airline was canceling were full”

dShould predict “were” given distant information (flights)

Long Short-term Memory (LSTM)

JA type of RNN proposed by Hochreiter and Schmidhuber in
1997 as a solution to the vanishing gradients problem

dBasic idea: turning multiplication into addition

dUse “gates” to control how much information to add/erase
JAt each timestep, there is a hidden
state h, (local information) and also a

cell state C, (distant information)

Long Short-term Memory (LSTM)

JGate: feedforward layer, followed by a sigmoid activation
function, followed by a pointwise multiplication with the
layer being gated

JFor example, output gate (What to output for hidden state)

0Oy — O'(Uoh,_l—l—Wox,)
h; = o; ®tanh(c)
JOther gates

Forget gate
JAdd gate
input gate

Long Short-term Memory (LSTM)

\
)

Summary: Common RNN NLP architectures

C ANN) C ANN)

t t t t t t
X1 Xo X Xq Xo Xn
a) sequence labeling b) sequence classification
y1 y2 “as ym
¢
Xo Xg X, (' DecoderRNN)

(? ? RNN f)

(' EncoderRNN)
ol * o f
X1 X2 X1 Xq4 Xo X
c¢) language modeling d) encoder-decoder

)

Encoder Decoder Architecture

JArbitrary length output given an input sequence
JA.K.A. sequence-to-sequence network

(JContext vector conveys the essence of the input to the

decoder
Y1 Yo Ym

—

(Context)

Encoder Decoder Architecture

dTraining an encoder-decoder for machine translation

Decoder
A
o N
IIego brula verde </s> gold

answers

Total loss is the average r
cross-entropy loss per L= T Z per-word
target word: =1 ry

loss

softmax

A

Glo) Gele) (o) i

=ﬁ Ji‘ layer(s)

Hﬂﬂ—H
BB

green witch arrived <s> llegd la bruja verde
N— _/
—

Encoder

Problem of Encoder-decoder architecture

(JContext vector encodes EVERYTHING about input sequence

1 Context vector acts as a bottleneck

bottleneck D

Lk

Encoder

ecoder

AF

-

Attention Mechanism

JEach output in decoder accesses all the hidden states from
the encoder, not just the last state

(JEach output attends to all input

Decoder

E : e
Oéijhj
J

attention AR
weights Nt
J -

hidden he,
layer(s)

Encoder

What’s next?

Self-attention
dTransformer block
dTransformer architecture
dLarge Language Model

AVision Transformers

