
EECS 230 Deep Learning
Lecture 11: RNN and LSTM

Credit to Daniel Jurafsky for figures of network architectures

Recap: Language models

Many NLP tasks require natural language output:
—Machine translation
—Speech recognition
—Natural language generation
—Spell-checking

Language models define probability distributions
over (natural language) strings or sentences.
➔We can use a language model to generate strings
➔We can use a language model to score/rank candidate strings

so that we can choose the best (i.e. most likely) one:
if PLM(A) > PLM(B), return A, not B

Recap: N-gram Language model

N-gram models assume each word (event)
depends only on the previous n−1 words (events):

N
Unigram model: P(w(1) . . . w(N)) = ∏ P(w(i))

i=1
N

Bigram model: P(w(1) . . . w(N)) = ∏ P(w(i) |w(i−1))
i=1
N

Trigram model: P(w(1) . . . w(N)) = ∏ P(w(i) |w(i−1), w(i−2))
i=1

Independence assumptions where the n-th event in a sequence depends
only on the last n-1 events are called Markov assumptions (of order n−1).

Recap: Learning a language model

We need (a large amount of) text as training data
to estimate the parameters of a language model.

The most basic parameter estimation technique:
relative frequency estimation (frequency = counts)

P(w(i)= ‘the’ | w(i–1) = ‘on’) = C(‘on the’) / C(‘on’)
Also called Maximum Likelihood Estimation (MLE)

Recap: Word Embedding

0.286
0.792
−0.177
−0.107
0.109
−0.542
0.349
0.271
0.487

expect =

Recap: Word2Vec Overview

qExample windows and process for computing

Recap: Word2Vec Objective Function

Our first neural net for NLP:
A neural n-gram model

Given a fixed-size vocabulary V, an n-gram model
predicts the probability of the n-th word
following the preceding n–1 words:

P(w(i) |w(i−1), w(i−2), … , wi−(n−1))

How can we model this with a neural net?
— Input layer: concatenate n–1 word vectors
— Output layer: a softmax over |V| units
— Feedforward network

Outline

qRecurrent Neural Network
qRNNs as Language Models
qRNNs for other NLP tasks
qStaked and Bi-directional RNN
qLSTM
qEncoder-decoder model

Recurrent Neural Network

qTemporal nature in language processing
qRNN deals with sequential input data stream like language.

A simple RNN

A Simple Recurrent Neural Network

qRNN illustrated as a feed-forward network

ht = g(Uht−1 +Wxt)
yt = f (Vht)

A Simple Recurrent Neural Network

qRNN unrolled in time

ht = g(Uht−1 +Wxt)
yt = f (Vht)

How to optimize Recurrent Neural Network?

qBackpropagation through time

ht = g(Uht−1 +Wxt)
yt = f (Vht)

Truncated backpropagation through time

qBackpropagation is very expensive for long sequences

qRun forward and backward through chunks of the sequence
instead of whole sequence

RNNs as Language Models

qLanguage models predict the next word in a sequence given
some preceding context.

P(fish|Thanks for all the)
qRNN Language Model

et = Ext
ht = g(Uht−1 +Wet)
yt = softmax(Vht)

Training an RNN Language Model

qMaximum likelihood estimation

Generation with RNN Language Model

qAutoregressive (casual) generation
qUnlike teacher forcing during training

RNNs for other NLP tasks

qRNN for sequence classification
qCommonly called text classification, like sentiment analysis

or spam detection

Stacked RNN

qOutputs from one RNN as an input sequence to another one

Bidirectional RNN

qTwo independent RNN, one forward, another backward

Bidirectional RNN for sequence classification

qCombine hidden states from first & last word

Vanishing/exploding gradients

qConsider the gradient of Lt at step t, with respect to the
hidden state hk at some previous step k (k<t):

qRecurrent multiplication
qGradients too small (vanishing gradient) or too large

(exploding gradient)

Exploding gradients

qWhat is the problem?
qWe take a very large step in SGD
qSolution: Gradient clipping

Vanishing gradients

qWhat is the problem?
qParameters barely get updated (no learning)
qSolution:

qLSTMs: Long short-term memory networks
qGRUs: Gated recurrent units

Local vs distant information

qHidden states tend to contain local information
qBut distant information is critical

“The flights the airline was canceling were full”
qShould predict “were” given distant information (flights)

Long Short-term Memory (LSTM)

qA type of RNN proposed by Hochreiter and Schmidhuber in
1997 as a solution to the vanishing gradients problem

qBasic idea: turning multiplication into addition
qUse “gates” to control how much information to add/erase
qAt each timestep, there is a hidden
state ht (local information) and also a
cell state Ct (distant information)

Long Short-term Memory (LSTM)

qGate: feedforward layer, followed by a sigmoid activation
function, followed by a pointwise multiplication with the
layer being gated

qFor example, output gate (What to output for hidden state)

qOther gates
qForget gate
qAdd gate
qInput gate

Long Short-term Memory (LSTM)

Summary: Common RNN NLP architectures

Encoder Decoder Architecture

qArbitrary length output given an input sequence
qA.K.A. sequence-to-sequence network
qContext vector conveys the essence of the input to the

decoder

Encoder Decoder Architecture

qTraining an encoder-decoder for machine translation

Problem of Encoder-decoder architecture

qContext vector encodes EVERYTHING about input sequence
qContext vector acts as a bottleneck

Attention Mechanism

qEach output in decoder accesses all the hidden states from
the encoder, not just the last state

qEach output attends to all input

What’s next?

qSelf-attention
qTransformer block
qTransformer architecture
qLarge Language Model
qVision Transformers

