
EECS 230 Deep Learning
Lecture 10: Language Model

Many slides from Julia Hockenmaier and Christopher Manning 



ChatGPT (Generative Pretrained Transformer)



What is Natural Language Processing?

qNatural language processing is the set of methods for 
making human language accessible to computers. 
(Jacob Eisenstein)

qNatural language processing is the field at the intersection 
of Computer science (Artificial intelligence) and linguistics. 
(Christopher Manning)



NLP application: Machine translation

http://education.news.cn/2020-08/25/c_1210768533.htm

Google Translate

http://education.news.cn/2020-08/25/c_1210768533.htm


NLP application: Dialog systems, chatbots, assistants



NLP application: Sentiment analysis

qDetermine the meaning behind is positive, negative, or 
neutral



Outline

qLanguage Model
qWhat is language model?
qN-gram language model

qWord Embedding
qWord2Vec

qBasic Neural Network
qFeedforward Neural Network for language modeling
qConvolutional Neural Network for NLP



Part I: Language Modeling



English Vocabulary
How large is the vocabulary of English (or
any other language)?

Vocabulary size = the number of distinct word types

If you count words in text, you will find that…
…a few words are very frequent 

(the, be, to, of, and, a, in, that,…)
… most words are very rare.
… even if you’ve read a lot of text,

you will keep finding words you haven’t seen before.
Word frequency: the number of occurrences of a word type in a text 
(or in a collection of texts)



Long-tailed word distribution
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Implications of Long-tailed distribution for NLP

The good:
Any text will contain a number of words that are very common. 
We have seen these words often enough that we know (almost) 
everything about them.

The bad:
Any text will contain a number of words that are rare.
We know something about these words, but haven’t seen them 
often enough to know everything about them. They may occur 
with a meaning or a part of speech we haven’t seen before.

The ugly:
Any text will contain a number of words that are unknown to us. 
We have never seen them before, but we still need to get at the 
structure (and meaning) of these texts.



How do we represent unknown words?

Many NLP systems assume a fixed vocabulary, but still have 
to handle out-of-vocabulary (OOV) words.

the UNK token
Replace all rare words (with a frequency at or below a given threshold, e.g. 2, 
3, or 5) in your training data with an UNK token (UNK = “Unknown word”).
Replace all unknown words that you come across after training (including rare 
training words) with the same UNK token



Why do we need language models?

Many NLP tasks require natural language output:
—Machine translation: return text in the target language
—Speech recognition: return a transcript of what was spoken
—Natural language generation: return natural language text
—Spell-checking: return corrected spelling of input

Language models define probability distributions 
over (natural language) strings or sentences.
➔We can use a language model to generate strings
➔We can use a language model to score/rank candidate strings 

so that we can choose the best (i.e. most likely) one:
if PLM(A) > PLM(B), return A, not B



Hmmm, but…

… what does it mean for a language model 
to “define a probability distribution”?

… why would we want to define probability 
distributions over languages?

… how can we construct a language model such that 
it actually defines a probability distribution?

You should be able to answer these questions 
after this lecture



Key concepts
N-gram language models

Independence assumptions
Getting from n-grams to a distribution over a language 
Relative frequency (maximum likelihood) estimation 
Smoothing



Text as a bag of words
Alice was beginning to get very tired of 
sitting by her sister on the bank, and of 
having nothing to do: once or twice she 
had peeped into the book her sister was 

reading, but it had no pictures or 
conversations in it, 'and what is the use 

of a book,' thought Alice 'without 
pictures or conversation?'

P(of) = 3/66 
P(Alice) = 2/66 
P(was) = 2/66

P(to) = 2/66 
P(her) = 2/66 
P(sister) = 2/66

P(,) = 4/66
P(') = 4/66

Now let’s look at natural language



P(of) = 3/66 
P(Alice) = 2/66 
P(was) = 2/66

P(to) = 2/66 
P(her) = 2/66 
P(sister) = 2/66

P(,) = 4/66
P(') = 4/66

Sampling with replacement
A sampled sequence of words

beginning by, very Alice but was and? 
reading no tired of to into sitting 
sister the, bank, and thought of

without her nothing: having
conversations Alice once do or on she
it get the book her had peeped was
conversation it pictures or sister
in, 'what is the use had twice of a

book''pictures or' to

In this model, P(English sentence) = P(word salad)



A language model over a vocabulary V
assigns probabilities to strings drawn from V*.

How do we compute the probability of a string
w(1) . . . w(i) ?

Recall the chain rule:
P(w(1) . . . w(i)) = P(w(1)) ⋅ P(w(2) |w(1)) ⋅ . . . ⋅ P(w(i) |w(i−1), . . . , w(1))

An n-gram language model assumes each word w(i)

depends only on the last n−1 words w(i−1), . . . , w(i−(n+1))

Pngram(w(1) . . . w(i)) = P(w(1)) ⋅ P(w(2) |w(1)) ⋅ . . . ⋅ P(w(i) |w(i−1), . . . , w(i−(n+1)))

Language modeling with N-grams



N-gram models

N-gram models assume each word (event) 
depends only on the previous n−1 words (events):

N
Unigram model: P(w(1) . . . w(N)) = ∏ P(w(i))

i=1 
N

Bigram model: P(w(1) . . . w(N)) = ∏ P(w(i) |w(i−1))
i=1 
N

Trigram model: P(w(1) . . . w(N)) = ∏ P(w(i) |w(i−1), w(i−2))
i=1

Independence assumptions where the n-th event in a sequence depends 
only on the last n-1 events are called Markov assumptions (of order n−1).



How many parameters do n-gram models have?

Given a vocabulary V of |V| word types:

Unigram model:

Bigram model:

Trigram model:

so, for |V| = 104:

104 parameters

1012 parameters

108 parameters

|V| parameters

|V|2 parameters

|V|3 parameters

(one distribution P( w(i) ) with |V| outcomes 
[each w Î V is one outcome])



Alice was beginning to get very tired
of sitting by her sister on the bank,
and of having nothing to do: once or
twice she had peeped into the book

her sister was reading, but it had no
pictures or conversations in it, 'and
what is the use of a book,' thought

Alice 'without pictures or
conversation?'

P(w(i) = of | w(i–1) = tired) = 1
P(w(i) = of | w(i–1) = use) = 1
P(w(i) = sister | w(i–1) = her) = 1
P(w(i) = beginning | w(i–1) = was) = 1/2 
P(w(i) = reading | w(i–1) = was) = 1/2

P(w(i) = bank | w(i–1) = the) = 1/3
P(w(i) = book | w(i–1) = the) = 1/3
P(w(i) = use | w(i–1) = the) = 1/3

A bigram model for Alice



English
Alice was beginning to get very 
tired of sitting by her sister on 
the bank, and of having nothing to 
do: once or twice she had peeped 
into the book her sister was 

reading, but it had no pictures or 
conversations in it, 'and what is 
the use of a book,' thought Alice 
'without pictures or conversation?'

Word Salad
beginning by, very Alice but was and? 
reading no tired of to into sitting 

sister the, bank, and thought of without 
her nothing: having conversations Alice 
once do or on she it get the book her had 
peeped was conversation it pictures or 
sister in, 'what is the use had twice of 

a book''pictures or' to

Now, P(English) ⪢ P(word salad)

Using a bigram model for Alice

P(w(i) = of | w(i–1) = tired) = 1
P(w(i) = of | w(i–1) = use) = 1
P(w(i) = sister | w(i–1) = her) = 1
P(w(i) = beginning | w(i–1) = was) = 1/2 
P(w(i) = reading | w(i–1) = was) = 1/2

P(w(i) = bank | w(i–1) = the) = 1/3
P(w(i) = book | w(i–1) = the) = 1/3
P(w(i) = use | w(i–1) = the) = 1/3



From n-gram probabilities to language models

Recall: a language L Í V* is a (possibly infinite) set of strings 
over a (finite) vocabulary V.

P(w(i) | w(i-1)) defines a distribution over the words in V:

By multiplying this distribution N times, we get
one distribution over all strings of the same length N (VN):

Prob. of one N-word string:



From n-gram probabilities to language models

We have just seen how to use n-gram probabilities to 
define one distribution P(VN) for each string length N.

But a language model P(L)=P(V*) should define
one distribution P(V*) that sums to one over all strings 
in L Í V*, regardless of their length:
P(L) = P(V) + P(V2) + P(V3) + … P(Vn) + … = 1

Solution:
Add an End-of-Sentence (EOS) token to V
Assume a) that each string ends in EOS and
b) that EOS can only appear at the end of a string.



From n-gram probabilities to language models with EOS

Think of a language model as a stochastic process:
— At each time step, randomly pick one more word.
— Stop generating more words when the word you pick 

is a special end-of-sentence (EOS) token.

To be able to pick the EOS token, we have to modify our 
training data so that each sentence ends in EOS.

This means our vocabulary is now VEOS = VÈ {EOS}

We then get an actual language model,
i.e. a distribution over strings of any length

Technically, this is only true because P(EOS | …) will be high enough that we are always 
guaranteed to stop after having generated a finite number of words
A leaky or inconsistent language model would have P(L) < 1. That could happen if EOS had a 
very small probability (but doesn’t really happen in practice).



Why do we want one distribution over L?

Why do we care about having one probability distribution 
for all lengths?

This allows us to compare the probabilities of strings of 
different lengths, because they’re computed by the same 
distribution.

This allows us to generate strings of arbitrary length 
with one model.



Learning (estimating) a language model

Where do we get the parameters of our model 
(its actual probabilities) from?

P(w(i)= ‘the’ | w(i–1) = ‘on’) = ???
We need (a large amount of) text as training data 
to estimate the parameters of a language model.

The most basic parameter estimation technique: 
relative frequency estimation (frequency = counts)

P(w(i)= ‘the’ | w(i–1) = ‘on’) = C(‘on the’) / C(‘on’)
Also called Maximum Likelihood Estimation (MLE)

C(‘on the’) [or f(‘on the’) for frequency]:
How often does ‘on the’appear in the training data? 
NB: C(‘on’) = ∑wÎVC(‘on’ w)



Handling unknown words: UNK
Training:

— Define a fixed vocabulary V such that all words in V 
appear at least n times in the training data
(e.g. all words that occur at least 5 times in the training corpus, 

or the most common 10,000 words in training)
— Add a new token UNK to V, and replace all other words 

in the corpus that are not in V by this token UNK
— Estimate the model on this modified training corpus.

Testing (when computing the probability of a string):
Replace any words not in the vocabulary by UNK



What about the beginning of the sentence?

In a trigram model
P(w(1)w(2)w(3)) = P(w(1))P(w(2) |w(1))P(w(3) |w(2), w(1))

only the third term P(w(3) |w(2),w(1)) is an actual trigram 
probability. What about P(w(1)) and P(w(2) |w(1)) ?

If this bothers you:
Add n–1 beginning-of-sentence (BOS) symbols 
to each sentence for an n–gram model:

BOS1 BOS2 A l i c e was …
Now the unigram and bigram probabilities 
involve only BOS symbols.



1. Replace all words not in V in the training corpus with UNK
2. Bracket each sentence by special start and end symbols:

<s> A l i c e was b e g i n n i n g t o g e t v e r y t i r e d … < / s >
3. Define the Vocabulary V’ = all tokens in modified training corpus 

(all common words, UNK, <s>, </s>)
4. Count the frequency of each bigram….
C(<s> Alice) = 1, C(Alice was) = 1, …

5. .... and normalize these frequencies to get probabilities:

P(was | Alice) = ∑
C(Alice was)

iw ∈V′
C(Alice wi)

Summary: Estimating a bigram model with BOS
(<s>), EOS (</s>) and UNK using MLE



How do we use language models?
Independently of any application, we could use
a language model as a random sentence generator
(we sample sentences according to their language model probability)

We can use a language model as a sentence ranker. 
We prefer output sentences SOut that have a higher language model
probability. We can use a language model P(SOut) to score and rank
these different candidate output sentences, e.g. as follows:
argmaxSOut P(SOut | Input) = argmaxSOut P(Input | SOut)P(SOut)



Generating from a distribution
How do you generate text from an n-gram model?

That is, how do you sample from a distribution P(X |Y=y)?
-Assume X has N possible outcomes (values): {x1, …, xN}
and P(X=xi | Y=y) = pi
-Divide the interval [0,1] into N smaller intervals according to 
the probabilities of the outcomes
-Generate a random number r between 0 and 1.
-Return the x1whose interval the number is in.

x1 x2 x3 x4 x5
0 p1+p2p1 p1+p2+p3 p1+p2+p3+p4 1

r



Generating the Wall Street Journal



Generating Shakespeare



Shakespeare as corpus
The Shakespeare corpus has N=884,647 word tokens 
for a vocabulary of V=29,066 word types

Shakespeare used 300,000 bigram types 
out of V2= 844 million possible bigram types.
99.96% of possible bigrams don’t occur in this corpus.

Corollary: A relative frequency estimate based on this corpus 
assigns non-zero probability to only 0.04% of possible bigrams

That percentage is even lower for trigrams, 4-grams, etc.
4-grams look like Shakespeare because they are Shakespeare!



The UNK token
What would happen if we used an UNK token 
on a corpus the size of Shakespeare’s?

1. If we set the frequency threshold for which words to 
replace too high, a very large fraction of tokens 
become UNK.

2. Even with a low threshold, UNK will have a very 
high probability, because in such a small corpus, 
many words appear only once.

3. But we would still only observe a small fraction of 
possible bigrams (or trigrams, quadrigrams, etc.)



We estimated a model on 884K word tokens, but:

Only 30,000 word types occur in the training data 
Any word that does not occur in the training data
has zero probability!

Only 0.04% of all possible bigrams (for 30K word 
types) occur in the training data
Any bigram that does not occur in the training data 
has zero probability (even if we have seen both words 
in the bigram by themselves)

MLE doesn’t capture unseen events



Part II: Word Embedding



How to represent the meaning of a word 
usable for a computer?
qCommon NLP solution: Use, e.g., WordNet, a thesaurus 

containing lists of synonym sets and hypernyms (“is a” 
relationships).

e.g., synonym sets containing “good”: e.g., hypernyms of “panda”:

[Synset('procyonid.n.01'), 
Synset('carnivore.n.01'), 
Synset('placental.n.01'), 
Synset('mammal.n.01'), 
Synset('vertebrate.n.01'), 
Synset('chordate.n.01'), 
Synset('animal.n.01'), 
Synset('organism.n.01'), 
Synset('living_thing.n.01'), 
Synset('whole.n.02'),
Synset('object.n.01'), 
Synset('physical_entity.n.01'), 
Synset('entity.n.01')]

noun: good
noun: good, goodness 
noun: good, goodness
noun: commodity, trade_good, good 
adj: good
adj (sat): full, good 
adj: good
adj (sat): estimable, good, honorable, respectable 
adj (sat): beneficial, good
adj (sat): good
adj (sat): good, just, upright
…
adverb: well, good
adverb: thoroughly, soundly, good

from nltk.corpus import wordnet as wn
poses = { 'n':'noun', 'v':'verb', 's':'adj (s)', 'a':'adj', 'r':'adv'} 
for synset in wn.synsets("good"):

print("{}: {}".format(poses[synset.pos()],
", ".join([l.name() for l in synset.lemmas()])))

from nltk.corpus import wordnet as wn 
panda = wn.synset("panda.n.01")
hyper = lambda s: s.hypernyms() 
list(panda.closure(hyper))



Problems with WordNet

q Great as a resource but missing nuance
q e.g., “proficient” is listed as a synonym for “good” This is only

correct in some contexts
q Missing new meanings of words

q e.g., wicked, badass, nifty, wizard, genius, ninja, bombest
q Impossible to keep up-to-date!

q Subjective
q Requires human labor to create and adapt
q Can’t compute accurate word similarity



Representing words as discrete symbols

qIn traditional NLP, we regard words as discrete symbols: 
hotel, conference, motel

qSuch symbols for words can be represented by one-hot
vectors:

motel = [0 0 0 0 0 0 0 0 0 0 1 0 0 0 0]
hotel = [0 0 0 0 0 0 0 1 0 0 0 0 0 0 0]

qVector dimension = number of words in vocabulary (e.g.,
500,000)



Problem with words as discrete symbols

qExample: in web search, if user searches for “Seattle
motel”, we would like to match documents containing
“Seattle hotel”

qBut:
motel = [0 0 0 0 0 0 0 0 0 0 1 0 0 0 0]
hotel = [0 0 0 0 0 0 0 1 0 0 0 0 0 0 0]

qThese two vectors are orthogonal
qThere is no natural notion of similarity for one-hot vectors!

qSolution:
• Could try to rely on WordNet’s list of synonyms to get similarity?
• But it is well-known to fail badly: incompleteness, etc.

• Instead: learn to encode similarity in the vectors themselves



Representing words by their context

q Distributional semantics: Aword’s meaning is given by the words
that frequently appear close-by

q “You shall know aword by the company it keeps” (J. R.Firth 1957: 11)

q One of the most successful ideas of modern statistical NLP!

q When a word w appears in a text, its context is the set of words that
appear nearby (within a fixed-size window).

q Use the many contexts of w to build up a representation of w

…government debt problems turning into
…saying that Europe needs unified

…India has just given its

banking
banking 
banking

crises as happened in 2009…
regulation to replace the hodgepodge… 
system a shot in the arm…

These context words will represent banking



Word Vector

qWe will build a dense vector for each word, chosen so that
it is similar to vectors of words that appear in similar
contexts

qNote: word vectors are also called word embeddings or
(neural) word representations

banking =

0.286
0.792
−0.177
−0.107
0.109
−0.542
0.349
0.271



Visualize Word Vectors

0.286
0.792
−0.177
−0.107
0.109
−0.542
0.349
0.271
0.487

expect =



Word2Vec: Overview

qWord2vec (Mikolov et al. 2013) is a framework for 
learning word vectors

Idea:
qWe have a large corpus (“body”) of text
qEvery word in a fixed vocabulary is represented by a vector
qGo through each position t in the text, which has a center 

word c and context (“outside”) words o
qUse the similarity of the word vectors for c and o to 

calculate the probability of o given c (or vice versa)
qKeep adjusting the word vectors to maximize this 

probability



Word2Vec Overview

qExample windows and process for computing



Word2Vec Overview

qExample windows and process for computing



Word2Vec Objective Function



Word2Vec Objective Function



Word2Vec Overview with vectors



Word2Vec prediction function

qThis is a soft-max function!



Word2Vec: Optimization

qTo train a model, we gradually adjust parameters to 
minimize a loss

qRecall: 𝜃 represents all the model 
parameters, in one long vector

qIn our case, with d-dimensional 
vectors and V-many words, we have:

qRemember: every word has two vectors

qWe optimize these parameters by gradient descent



Word2Vec: Gradient

qNeed gradients for all center words and outside words

qWhy two vectors? Easier optimization. Average both at the 
end.



Part III: Basic Neural Networks for NLP



What have we covered so far?

We have covered a broad overview of some basic 
techniques in NLP:

— N-gram language models
— Word embeddings

Let’s create a (much better) neural language
model!



Our first neural net for NLP: 
A neural n-gram model

Given a fixed-size vocabulary V, an n-gram model 
predicts the probability of the n-th word
following the preceding n–1 words:

P(w(i) |w(i−1), w(i−2), … , wi−(n−1))

How can we model this with a neural net?
— Input layer: concatenate n–1 word vectors
— Output layer: a softmax over |V| units



An n-gram model P(w | w1…wk)
as a feedforward net (naively)

Assumptions:
The vocabulary V contains V types (incl. UNK, BOS, EOS) 
We want to condition each word on k preceding words

Our (naive) model:
— [Naive]

Each input word wi Î V is a V-dimensional one-hot vector v(w)
® The input layer x = [v(w1),…,v(wk)] has V×k elements

— We assume one hidden layer h
— The output layer is a softmax over V elements

P(w | w1…wk) = softmax(hW2 + b2)



An n-gram model P(w | w1…wk)
as a feedforward net (better)

Assumptions:
The vocabulary V contains V types (incl. UNK, BOS, EOS) 
We want to condition each word on k preceding words

Our (better) model:
— [Better]

Each input word wi Î V is an n-dimensional dense embedding
vector v(w) (with n≪V)
® The input layer x = [v(w1),…,v(wk)] has n×k elements

— We assume one hidden layer h
— The output layer is a softmax over V elements

P(w | w1…wk) = softmax(hW2 + b2)



Our neural n-gram models

Architecture:
Input Layer: 
Hidden Layer: 
Output Layer:

x = [v(w1)….v(wk)]
h = g(xW1 + b1)
P(w | w1…wk) = softmax(hW2 + b2)

How many parameters do we need? [# of weights and biases]:
Hidden layer with one-hot inputs: W1 Î R(k·V) × dim(h)
Hidden layer with dense inputs: W1 Î R(k·n) ×dim(h)

b1 Î Rdim(h)
b1 Î Rdim(h)

W2 Î Rdim(h)×VOutput layer (any inputs): b2 Î RV

With V = 10K, n = 300 (word2vec), dim(h) = 300
k = 2 (trigram): W1 ∈ R20,000×300 orW1 ∈ R600×300 and b1∈ R300

k = 5 (six-gram): W1 ∈ R50,000×300 orW1 ∈ R1500×300 and b1∈ R300

W2 ∈ R300×10,000 b2 ∈ R10,000

Six-gram model with one-hot inputs: 27,000,460,000 parameters, 
with dense inputs: 3,460,000 parameters

Traditional six-gram model: 104x6 = 1024 parameters



Naive (one-hot input) 
neural n-gram model

Advantage over non-neural n-gram model:
— The hidden layer captures interactions

among context words
— Increasing the order of the n-gram requires only

a small linear increase in the number of parameters.
dim(W1) goes from (k·dim(V))·dim(h) to ((k+1)·dim(V))·dim(h)

— Increasing the vocabulary also leads only to 
a linear increase in the number of parameters

But: With a one-hot encoding and dim(V) ≈ 10K or so,
this model still requires a LOT of parameters to learn.
And: The Markov assumption still holds



Better (dense embeddings input) neural n-
gram model

Advantage over non-neural n-gram model:
— Same as naive neural model, plus:

Advantages over naive neural n-gram model:
— We have far fewer parameters to learn
— Better generalizations: If similar input words have 

similar embeddings, the model will predict similar 
probabilities in similar contexts:
P(w | the doctor saw the) ≈ P(w |a nurse sees her)

But: This generalization only works if the contexts have similar 
words in the same position.
And: The Markov assumption still holds.



Neural n-gram models

Naive neural n-gram models (one-hot inputs) have 
similar shortcomings to standard n-gram models
–Models get very large (and sparse) as n increases
–We can’t generalize across similar contexts
–Markov (independence) assumptions are too strict

Better neural n-gram models can be obtained with 
dense word embeddings:

— Models remain much smaller
— Embeddings may provide some (limited) generalization 

across similar contexts



1D CNNs for text
Text is a (variable-length) sequence of words (word vectors)

[#channels = dimensionality of word vectors]
We can use a 1D CNN to slide a window of n tokens across:

— Filter size n = 3, stride = 1, no padding
The qu i c k brown f o x j ump s o v e r t h e l a z y dog
The qu i c k brown f o x j ump s o v e r t h e l a z y dog
The q u i c k brown f o x jumps o v e r t h e l a z y dog
The q u i c k brown f o x jumps o v e r t h e l a z y dog
The q u i c k brown f o x jumps o v e r t h e l a z y dog
The q u i c k brown f o x j ump s o v e r t h e l a z y dog

— Filter size n = 2, stride = 2, no padding:
The qu i c k brown f o x j ump s o v e r t h e l a z y dog
The q u i c k brown f o x j ump s o v e r t h e l a z y dog
The q u i c k brown f o x jumps o v e r t h e l a z y dog
The q u i c k brown f o x j ump s o v e r t h e l a z y dog



What we have learned today

qLanguage Modeling
qN-gram is a simple language model
qWord2Vec gives embeddings of a word based on its context
qNeural N-gram Language Model
qFeedforward network and CNN for NLP
qNext lecture: Recurrent Neural Network, Sequence-t-

sequence model, and transformer network


