N,

UCMERCED

EECS 230 Deep Learning
Lecture 10: Language Model

Many slides from Julia Hockenmaier and Christopher Manning

ChatGPT (Generative Pretrained Transformer)

@ You

What are top 10 things to do in Merced?

ChatGPT

Merced, California, offers a range of activities and attractions for visitors to enjoy. Here are the top

10 things to do in Merced:

1. Merced National Wildlife Refuge: Explore the refuge and observe diverse bird species, including
migratory birds, waterfowl, and endangered species like the Aleutian Canada goose.

2. Castle Air Museum: Discover the history of aviation at this museum, which features a vast
collection of aircraft, including military planes, helicopters, and memorabilia.

3. Yosemite National Park: While not directly in Merced, the park is nearby and offers breathtaking
scenery, hiking trails, waterfalls, and opportunities for camping and wildlife viewing.

4. Applegate Park and Zoo: Enjoy a day outdoors at this park, which features playgrounds, picnic
areas, a small zoo with animals like monkeys, birds, and reptiles, and a miniature train ride.

5. Downtown Merced: Explore the historic downtown area with its charming shops, cafes,
restaurants, and galleries. Don't miss the Merced County Courthouse Museum to learn about the
region's history.

6. Merced County Fairgrounds: Check out events and festivals held at the fairgrounds throughout
the year, including the Merced County Fair, concerts, rodeos, and more.

7. Lake Yosemite: Spend a relaxing day by the lake, where you can enjoy fishing, boating, kayaking,

picnicking, and walking along the scenic trails.

What is Natural Language Processing?

dNatural language processing is the set of methods for
making human language accessible to computers.
(Jacob Eisenstein)

I Natural language processing is the field at the intersection
of Computer science (Artificial intelligence) and linguistics.
(Christopher Manning)

NLP application: Machine translation

FHROENLZILEENR QBIE IR TREFE

2020-08-25 08:06:03 3Rif: HRILIZIR

TOFZKIEAME (tR) AT “BHEER": ZTER, MERBRREIR LTS
L. BiR. BE, SXREX, HEHRBERSENS.

BT B LRRE, TR EARK,

RRILFILIBBRFIRVERS, SAAEMMIMI=ETHR: “ARRN, KAZK
FiRESR. 7

XERETE, MABENBEZHMRK, KE, BOE, OE—BETRE, KATH
ITEAREREHIENMZ,

http:/education.news.cn/2020-08/25/c 1210768533.htm

0o
- ANs|q
e

Grandpa feels sorry for his granddaughter and let the baby
sleep in

2020-08-25 08:06:03 Source: Qianjiang Evening News

Uncle Zhong (a pseudonym), 70, fell into "summer anxiety": This summer, he
would shuttle his granddaughter to and from training classes every week. With
high temperatures and scorching heat, every day | come back, | feel as weak as

stepping on cotton.
In addition to physical discomfort, there is also mental tension.

Feeling that his son and daughter—in-law were reporting too much for their
children, Uncle Zhong also had a conflict with them: "It's a hot day, adults and

children suffer."

During this period of time, Uncle Zhong came to the Mental Health
Department of Zhejiang Provincial People's Hospital because he was prone to get

angry, insomnia, poor appetite, and unstable blood pressure.

http://education.news.cn/2020-08/25/c_1210768533.htm

NLP application: Dialog systems, chatb

Welcome!

Workspaces
Idess & Inspiration
How to

Series

New Workspaces products
Products

Desks & tables
Office chairs

Cable management &
accessories

Workspace storage
Paper & media organizers
Bins & bags

Flooring

Lighting

Related products

e —
Shop Online £8,
> Get started Close
—

© 0O http://19...a-us.cgi

Some things you
can ask me:

What’s my ETA?
When is sunrise in Paris?
Wake me up in 8 hours
Call my brother at work

Call Brian

Welcome to IKEA. I'm Anna,
IKEA USA's Automated Online
Assistant. You can ask me
about IKEA and our products
and our services. How can T
help you today?

Examples

“Explain quantum computing in
simple terms" —

“Got any creative ideas for a 10
year old’s birthday?" —

“How do | make an HTTP request
in Javascript?” —

ChatGPT

4

Capabilities

Remembers what user said
earlier in the conversation

Allows user to provide follow-up
corrections

Trained to decline inappropriate
requests

Tips to help you
figure out what

to say

The first interest
in your list. Scroll
up to see more

VAN

Limitations

May occasionally generate
incorrect information

May occasionally produce
harmful instructions or biased
content

Limited knowledge of world and
events after 2021

ask me anything

ots, assistants

Cortana'’s
Notebook

Listen for what
song is playing

Link to more tips
and suggestions

Type a question,
command, or
search for
Cortana to do...

or tap the
microphone to
start talking

WERALEREFT @A, 75 DWHER S £

5 | e

UCMERCED

NLP application: Sentiment analysis

(Determine the meaning behind is positive, negative, or
neutral

e o
My experience The product is Your support
so far has been okay | guess. team is
fantastic! useless.

POSITIVE NEUTRAL NEGATIVE

Outline

dLanguage Model
dWhat is language model?
N-gram language model

JWord Embedding
dWord2Vec

(JBasic Neural Network

U Feedforward Neural Network for language modeling
U Convolutional Neural Network for NLP

N,

JCMERCED

Part I: Language Modeling

English Vocabulary

How large is the vocabulary of English (or
any other language)?
Vocabulary size = the number of distinct word types

If you count words in text, you will find that...

...a few words are very frequent

(the, be, to, of, and, a, in, that,...)
... most words are very rare.
... even if you’ve read a lot of text,

you will keep finding words you haven’t seen before.
Word frequency: the number of occurrences of a word type in a text
(or in a collection of texts)

Long-tailed word distribution

100000

A few words
are very frequent

10000

1000 [

Y Most words

b e, are very rare

10

Word frequency (log-scale)

1

1 100000

i 10 7 7100 7 ‘ 10007 . : 10000
English words, sorted by frequency (log-scale)
W1 = the, w2=to,, W5346 = computer, ...

Implications of Long-tailed distribution for NLP

The good:
Any text will contain a number of words that are very common.

We have seen these words often enough that we know (almost)
everything about them.

The bad:

Any text will contain a number of words that are rare.
We know something about these words, but haven’t seen them
often enough to know everything about them. They may occur
with a meaning or a part of speech we haven’t seen before.
The ugly:
Any text will contain a number of words that are unknown to us.
We have never seen them before, but we still need to get at the
structure (and meaning) of these texts.

How do we represent unknown words?

Many NLP systems assume a fixed vocabulary, but still have
to handle out-of-vocabulary (OOV) words.

the UNK token

Replace all rare words (with a frequency at or below a given threshold, e.g. 2,
3, or 5) in your training data with an UNK token (UNK = “Unknown word”).
Replace all unknown words that you come across after training (including rare
training words) with the same UNK token

Why do we need language models?

Many NLP tasks require natural language output:
—Machine translation: return text in the target language
—Speech recognition: return a transcript of what was spoken
—Natural language generation: return natural language text
—Spell-checking: return corrected spelling of input

Language models define probability distributions

over (natural language) strings or sentences.

- We can use a language model to generate strings

-> We can use a language model to score/rank candidate strings
so that we can choose the best (i.e. most likely) one:

if PLM(A) > PLm(B), return A, not B

Hmmm, but...

... what does it mean for a language model
to “define a probability distribution”?

... why would we want to define probability
distributions over languages?

... how can we construct a language model such that
it actually defines a probability distribution?

You should be able to answer these questions
after this lecture

Key concepts

N-gram language models
Independence assumptions
Getting from n-grams to a distribution over a language
Relative frequency (maximum likelihood) estimation
Smoothing

Now Iet S look at natural Ianguage

Tex& as a bag cwf mc;:rrcl.s

was beginning to get very tired of
sitting by her on the bank, of
having nothing to do: once or twice she
had peeped into the book her was |
reading, but it had no pictures or f
conversations in it, what is the use |
of a book,' thought 'without
pictures or conversation?'
P(of) =3/66 P(to) =2/66 P(,)=4/66
P() = 2/66 P(her)=2/66 P(')=4/66
P(was) =2/66 P() =2/66

Samplmg W|th replacement

i beginning by, very but was ?
¥ reading no tired of to into sitting
the, bank, thought of
without her nothing: having
conversations once do or on she
it get the book her had peeped was
conversation it pictures or
in, 'what is the use had twice of a

,,,,, D00k | pictures or' to . . .
P(of) = 3/66 P(to) = 2/66 P(,)=4/66
P) = 2/66 P(her) = 2/66 P(') = 4/66
P(was) = 2/66 P) = 2/66

In this model, P(English sentence) = P(word salad) l

Language modeling with N-grams

A language model over a vocabulary V
assigns probabilities to strings drawn from V*,

How do we compute the probability of a string
wh L w® 2

Recall the chain rule:
Pw® w0y = PwD) « Pw@ [wDy .« PWD | wl=D o wh)

An n-gram language model assumes each word w

depends only on the last n—-1 words w¢=", ..., w1

Pngram(w(” L W(l)) = P(W(1)) . P(W(Z) | W(1)) o« . P(W(l) | W(i_1) W(l_(n+1)))

.....

N-gram models

N-gram models assume each word (event)

depends only on the previous n-1 words (events):
N

Unigram model: P(w" ... w™) = M Pw®)
i=1
N
Bigram model: P(w™" ... w") = M Pw® | wt=1y
i=1
N . . .
Trigram model: P(w™ ... wd¥)) = M Pow® | wlt=h wi=2)y

=1

Independence assumptions where the n-th event in a sequence depends
only on the last n-1 events are called Markov assumptions (of order n—1).

How many parameters do n-gram models have?

Given a vocabulary V of |V| word types: so, for |V| = 104:

Unigram model: |V| parameters 104 parameters

(one distribution P(w@®) with |V| outcomes
[each w € V is one outcome])

Bigram model: |V|2 parameters 108 parameters

Trigram model: |V|3 parameters 1012 parameters

A bigram model for Alice

Alice was beginning to get very tired
of sitting by her sister on the bank,
of having nothing to do: once or
twice she had peeped into the book
her sister was reading, but it had no
pictures or conversations in it, '
what is the use of a book,' thought
Alice 'without pictures or

conversation?'
P(wi=of |wi-D=tired)=1 P(w()=bank | wi-)= the) = 1/3
P(wi=of |wiD=use) =1 P(w(=book | wi-1)= the) = 1/3
P(wi)=sister |wi-)=her)= 1 P(wi)=use | wi-)= the) = 1/3
P(wi)=Dbeginning | wi-)=was)=1/2

P(w()=reading | wi-)=was) = 1/2

Using a bigram model for Alice

English Word Salad

Alice was beginning to get very

L . -
tired of sitting by her sister on beglnylng by,_very Allce_but was oo
the bank of having nothing to reading no tired of to into sitting

! g g sister the, bank, thought of without

do: once or twice she had peeped
into the book her sister was
reading, but it had no pictures or
conversations in it, ' what is
the use of a book,' thought ZAlice
'without pictures or conversation?'

Now, P(English) > P(word salad) |

Pwi=of |wi-D=tired)=1 P(wih=bank | wi-)= the)=1/3
Pwi=of |wi-D=use) =1 P(wi=book | wi-)= the) =1/3
P(wh=sister |wi-)=her)= 1 P(wi)=use | wi-)= the) = 1/3
P(wi)=Dbeginning | wi-)=was)=1/2
P(w()=reading | wi-)=was) = 1/2

her nothing: having conversations Alice
once do or on she it get the book her had
peeped was conversation it pictures or
sister in, 'what is the use had twice of
a book' 'pictures or' to

From n-gram probabilities to language models

Recall: a language L < V* is a (possibly infinite) set of strings
over a (finite) vocabulary V.

P(w® | wi-n) defines a distribution over the words in V:

Z P(w(i)=w’ | w(i_1)=w) = |

w'eV

YweV:

By multiplying this distribution N times, we get
one distribution over all strings of the same length N (VN):

Prob. of one N-word string: P(wi...wy) = H P(w® =, | wi=D = w,_,)
i=1...N

From n-gram probabilities to language models

We have just seen how to use n-gram probabilities to
define one distribution P(VN) for each string length N.

But a language model P(L)=P(V*) should define
one distribution P(V*) that sums to one over all strings
in L ¢ V¥, regardless of their length:

P(L) =P(V) + P(V2) + P(V3) + ... P(Vn) + ... =1

Solution:

Add an End-of-Sentence (EOS) token to V
Assume a) that each string ends in EOS and

b) that EOS can only appear at the end of a string.

From n-gram probabilities to language models with EOS

Think of a language model as a stochastic process:

— At each time step, randomly pick one more word.
— Stop generating more words when the word you pick
is a special end-of-sentence (EOS) token.

To be able to pick the EOS token, we have to modify our
training data so that each sentence ends in EOS.
This means our vocabulary is now VEOs =V U {EOS}

We then get an actual language model,
i.e. a distribution over strings of any length

Technically, this is only true because P(EOS | ...) will be high enough that we are always
guaranteed to stop after having generated a finite number of words

A leaky or inconsistent language model would have P(L) < 1. That could happen if EOS had a
very small probability (but doesn’t really happen in practice).

Why do we want one distribution over L?

Why do we care about having one probability distribution
for all lengths?

This allows us to compare the probabilities of strings of
different lengths, because they’re computed by the same

distribution.

This allows us to generate strings of arbitrary length
with one model.

Learning (estimating) a language model

Where do we get the parameters of our model
(its actual probabilities) from?

P(w® = ‘the’| wi-1) = ‘on’) = 77?7
We need (a large amount of) text as training data
to estimate the parameters of a language model.

The most basic parameter estimation technique:

relative frequency estimation (frequency = counts)
Pw® = ‘the’ | wi-) = ‘on’) = C(‘on the’) / C(‘on’)

Also called Maximum Likelihood Estimation (MLE)

C(‘on the’) [or f(‘on the’) for frequency]:

How often does ‘on the’ appear in the training data?
NB: C(‘on’)y= Y werC(‘on’w)

Handling unknown words: UNK

Training:
— Define a fixed vocabulary V such that all words in V
appear at least ntimes in the training data

(e.g. all words that occur at least 5 times in the training corpus,
or the most common 10,000 words in training)

— Add a new token UNK to V, and replace all other words
in the corpus that are not in V by this token UNK
— Estimate the model on this modified training corpus.

Testing (when computing the probability of a string):
Replace any words not in the vocabulary by UNK

What about the beginning of the sentence?

In a trigram model

P(W(T)W(Z)W(3)) - P(W“))P(W(Z) | W(T))P(W(3) | w2) wh)
only the third term Pow® | w@, wy is an actual trigram
probability. What about P(w") and P(w'® | w(1)) ?

If this bothers you:
Add n—1 beginning-of-sentence (BOS) symbols

to each sentence for an n—gram model:

BOS1 BOS2 Alice was ...
Now the unigram and bigram probabilities

involve only BOS symbols.

Summary: Estimating a bigram model with BOS
(<s>), EOS (</s>) and UNK using MLE

1. Replace all words not in V in the training corpus with UNK
2. Bracket each sentence by special start and end symbols:

<s> Alice was beginning to get very tired ...</s>

3. Define the Vocabulary V’ = all tokens in modified training corpus
(all common words, UNK, <s>, </s>)

4. Count the frequency of each bigram....
C(<s> Alice)=1, C(Alice was)=1, ...
5. and normalize these frequencies to get probabilities:
C(Alice was)
2 - C(Alice wy)
welr

P(was| Alice) =

How do we use language models?

Independently of any application, we could use

a language model as a random sentence generator
(we sample sentences according to their language model probability)

We can use a language model as a sentence ranker.

We prefer output sentences Sou that have a higher language model

probability. We can use a language model P(Souw) to score and rank

these different candidate output sentences, e.g. as follows:
argmaxsout P(Sout | Input) = argmaxsout P(Input | Sout) P(Sout)

Generating from a distribution
How do you generate text from an n-gram model?

That is, how do you sample from a distribution P(X [Y=y)?

- Assume X has N possible outcomes (values): {xi, ..., xn}
and P(X=xi| Y=y) = pi

-Divide the interval [0,1] into N smaller intervals according to
the probabilities of the outcomes

- Generate a random number r between 0 and 1.

- Return the x1 whose interval the number is in.

Generating the Wall Street Journal

unigram: Months the my and 1ssue of year foreign new exchange’s september
were recession exchange new endorsed a acquire to six executives

Digram: Last December through the way to preserve the Hudson corporation
N. B. E. C. Taylor would seem to complete the major central planners one
point five percent of U. S. E. has already old M. X. corporation of living on
information such as more frequently fishing to keep her

frigram: They also point to ninety nine point six billion dollars from two
hundred four oh six three percent of the rates of interest stores as Mexico and
Brazil on market conditions

Generating Shakespeare

Unigram

e To him swallowed confess hear both. Which. Of save on trail for are ay device
and rote life have

e Every enter now severally so, let

¢ Hill he late speaks; or! a more to leg less first you enter

e Are where exeunt and sighs have rise excellency took of.. Sleep knave we. near;
vile like

Bigram

e What means, sir. I confess she? then all sorts, he is trim, captain.

eWhy dost stand forth thy canopy, forsooth; he is this palpable hit the King Henry.
Live king. Follow.

eWhat we, hath got so she that I rest and sent to scold and nature bankrupt, nor the
first gentleman?

eEnter Menenius, if it so many good direction found’st thou art a strong upon com-
mand of fear not a liberal largess given away, Falstaff! Exeunt

Trigram

e Sweet prince, Falstaff shall die. Harry of Monmouth’s grave.

e This shall forbid it should be branded, if renown made it empty.

e Indeed the duke; and had a very good friend.

e Fly, and will rid me these news of price. Therefore the sadness of parting, as they
say, 'tis done.

Quadrigram

e King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the
watch. A great banquet serv’d in;

e Will you not tell me who I am?

e It cannot be but so.

e Indeed the short and the long. Marry, "tis a noble Lepidus.

Shakespeare as corpus

The Shakespeare corpus has N=884,647 word tokens
for a vocabulary of 1'=29,066 word types

Shakespeare used 300,000 bigram types
out of 2= 844 million possible bigram types.

99.96% of possible bigrams don’t occur in this corpus.

Corollary: A relative frequency estimate based on this corpus

assigns non-zero probability to only 0.04% of possible bigrams
That percentage is even lower for trigrams, 4-grams, etc.
4-grams look like Shakespeare because they are Shakespeare!

The UNK token

What would happen if we used an UNK token
on a corpus the size of Shakespeare’s?

1. If we set the frequency threshold for which words to
replace too high, a very large fraction of tokens
become UNK.

2. Even with a low threshold, UNK will have a very

high probability, because in such a small corpus,
many words appear only once.

3. But we would still only observe a small fraction of
possible bigrams (or trigrams, quadrigrams, etc.)

MLE doesn’t capture unseen events
We estimated a model on 884K word tokens, but:

Only 30,000 word types occur in the training data
Any word that does not occur in the training data
has zero probability!

Only 0.04% of all possible bigrams (for 30K word
types) occur in the training data

Any bigram that does not occur in the training data
has zero probability (even if we have seen both words
in the bigram by themselves)

N,

JCMERCED

Part II: Word Embedding

How to represent the meaning of a word
usable for a computer?
(JCommon NLP solution: Use, e.g., WordNet, a thesaurus

containing lists of synonym sets and hypernyms (“is a”
relationships).

e.g., Synonym sets containing “good’: e.g., hypemyms of “panda”:
from nltk.corpus import wordnet as wn . from nltk.corpus import wordnet as wn
s~ L, e S (), 60, W] panda ~ wn.synset(*panda.n.01")

print("3: {}".format(poses[synset.pos(], hyper = lambda s: s.hypernyms(Q)

", ".join([1.nameQ) for 1 in synset.lemmas()1))) list(panda.closureChyper))
noun: good S ' . '
: ynset('procyonid.n.@1"),

houn: good, goodness Synset('carnivore.n.01"),
houn: good, goodness Synset('placental .n.@1"),
noun: commodity, trade_good, good

ite gt Synset('mammal .n.@1"),

-) Synset('vertebrate.n.0l1"),
gj%'czao?d full, good Synset('chordate.n.@1"),
adj (sat): estimable, good, honorable, respectable gigzig'g%gﬁ}sgr@@i .’)

adj (sat): beneficial, good Synset('living_thing.n.01"),

adj (sat): good S ' '
. .) set('whole.n.02"),
adj (sat): good, just, upright Sznset('object.n.m'),
. Synset('physical_entity.n.Q1'),
adverb: well, good Synset('entity.n.01')]

adverb: thoroughly, soundly, good

Problems with WordNet

 Great as aresource but missing nuance

d e.g., “proficient” is listed as a synonym for “good” This is only
correct in some contexts

O Missing new meanings of words
O e.g., wicked, badass, nifty, wizard, genius, ninja, bombest
 Impossible to keep up-to-date!

O Subjective

 Requires human labor to create and adapt

O Can’t compute accurate word similarity

Representing words as discrete symbols

dIn traditional NLP, we regard words as discrete symbols:
hotel, conference, motel

dSuch symbols for words can be represented by one-hot
vectors:

motel =[000000000010000]
hotel=[000000010000000]

Vector dimension = number of words in vocabulary (e.g.,
500,000)

Problem with words as discrete symbols

dExample: in web search, if user searches for “Seattle
motel”, we would like to match documents containing

“Seattle hotel”
U But:

motel=[000000000010000]
hotel =[000000010000000]
U These two vectors are orthogonal
O There is no natural notion of similarity for one-hot vectors!

QSolution:

 Could try to rely on WordNet's list of synonyms to get similarity?
 But it is well-known to fail badly: incompleteness, etc.

* Instead: learn to encode similarity in the vectors themselves

Representing words by their context

O Distributional semantics: Aword’s meaning is given by the words
that frequently appear close-by

O “You shall know a word by the company it keeps” (J. R Firth 1957: 11)

L One of the most successful ideas of modern statistical NLP!

O When aword w appears in a text, its context is the set of words that
appear nearby (within a fixed-size window).

O Use the many contexts of w to build up a representation of w

...government debt problems turning into banking crises as happened in 2009...
...saying that Europe needs unified banking regulation to replace the hodgepodge...

...India has just given its banking system a shotin the arm...

N\ /

These context words will represent banking

Word Vector

We will build a dense vector for each word, chosen so that
it is similar to vectors of words that appear in similar

contexts

\
0.286

0.792
-0.177
banking = -0.107

0.109
-0.542

0.349

g 0.271 .

Note: word vectors are also called word embeddings or
(neural) word representations

Visualize Word Vectors

expect =

(0286)

0.792
-0.177
-0.107

0.109
-0.542

0.349

0.271

0.487

need help
come
go
take
give keep
make get
meet cee continue
expect want become
think
say remain
are .
is
be
wergas
being
been
haq1as

have

Word2Vec: Overview

dWord2vec (Mikolov et al. 2013) is a framework for
learning word vectors

ldea:
JWe have a large corpus (“body”) of text
JEvery word in a fixed vocabulary is represented by a vector

JGo through each position t in the text, which has a center
word c and context (“outside”) words o

dUse the similarity of the word vectors for c and o to
calculate the probability of o given c (or vice versa)

JKeep adjusting the word vectors to maximize this
probability

Word2Vec Overview

JExample windows and process for computing P(Wt+j | wy)

P(We_p | we) P(Weip | We)

P(we_q | W) P(Weyq | we)

problems turning banking crises as

\ Y , \—Y—} L Y J
outside context words center word outside context words
in window of size 2 at positiont in window of size 2

Word2Vec Overview

JExample windows and process for computing P(Wt+j | wy)

P(wi_y | wy) P(Weyo | W)
P(we_q | we) P(Wiiq | we)
problems turning into crises as

Y Y ¢ Y ‘
outside context words center word outside context words
in window of size 2 at positiont in window of size 2

Word2Vec Objective Function

For each positiont = 1, ..., T, predict context words within a
window of fixed size m, given center word w;. Data likelihood:

T
Likelihood = L(8) = l l l l P(Wey; | we; 0)
t=1 —ms<js<m
6 is all variables ‘ J#0
to be optimized
1 sometimes called a cost or loss function

The objective function J(8) is the (average) negative log likelihood:

1
J(0) = —=log L(0) = — Z Z log P(wes; | we; 6)

t= —m<]<m
Jj#0

Minimizing objective function & Maximizing predictive accuracy

Word2Vec Objective Function

We want to minimize the objective function:

J(8) = ——z z IOSP(WH] | W, 9)

t=1 —m<]<m
Jj#0

Question: How to calculate P(WH]- | we; 9) ?

Answer: We will use two vectors per word w:
* v, Wwhen wis a center word

* u, when wis a context word

Then for a center word ¢ and a context word o:

exp (ugvc)
ZWEV exp(uiyve)

P(olc) =

Word2Vec Overview with vectors

e Example windows and process for computing P(WH_]' | Wt)

* P(Uproblems | Vinto) short for P(problems | into ; Wpropiems: Vinto»)

P(uproblems | vinto) P(ucrisis |vinto)

P(utuning | Vinto P ubanking |vint0)

problems turning banking crises as

l Y o \ Y J
outside context words center word outside context words
in window of size 2 at positiont in window of size 2

Word2Vec prediction function

@ Exponentiation makes anything positive
I) Dot product compares similarity of o and c.

T)/ = wy = ?zluivi
eXpUo Vg Larger dot product = larger probability

P(0|c) = pmmmmnldl___
Qwev eXp(u?;va)lv\
= @ Normalize over entire vocabulary

to give probability distribution

This is a soft-max function!

Word2Vec: Optimization

To train a model, we gradually adjust parameters to

minimize a loss

JRecall: 8 represents all the model
parameters, in one long vector

dIn our case, with d-dimensional
vectors and V-many words, we have:

JRemember: every word has two vectors

JWe optimize these parameters by gradient descent

gnew — Hold L &V@J(e)

Vaardvark
(o

Vzebra

Ugardvark
Ugq

| Uzebra

GEHQdef

Word2Vec: Gradient

dNeed gradients for all center words and outside words

exp(u,' V)

=1 exp(uy, V)

logp(o|c) = log

JWhy two vectors? Easier optimization. Average both at the
end.

N,

JCMERCED

Part III: Basic Neural Networks for NLP

What have we covered so far?

We have covered a broad overview of some basic
techniques in NLP:

— N-gram language models
— Word embeddings

Let’s create a (much better) neural language
model!

Our first neural net for NLP:

A neural n-gram model

Given a fixed-size vocabulary V, an n-gram model
predicts the probability of the n-th word
following the preceding n—1 words:

PO wl=1) (i=2) - ypt=(n=1))
How can we model this with a neural net?
— Input layer: concatenate n—1 word vectors

— Output layer: a softmax over VI units

An n-gram model P(w | wi...Wk)
as a feedforward net (naively)

Assumptions:

The vocabulary V contains Vtypes (incl. UNK, BOS, EOS)
We want to condition each word on k preceding words

Our (naive) model:

— [Naive]
Each input word wi € Vis a V/-dimensional one-hot vector v(w)
— The input layer x = [v(w1),...,v(wk)] has Vxk elements

— We assume one hidden layer h

— The output layer is a softmax over V elements
P(w | wi...wk) = softmax(hW2 + b2)

An n-gram model P(w | wi...Wk)
as a feedforward net (better)

Assumptions:

The vocabulary V contains Vtypes (incl. UNK, BOS, EOS)
We want to condition each word on k preceding words

Our (better) model:

— [Better]
Each input word wi € V is an n-dimensional dense embedding
vector v(w) (with n<V)

— The input layer x = [v(w1),...,v(wk)] has nxk elements
— We assume one hidden layer h

— The output layer is a softmax over V elements
P(w | wi...wk) = softmax(hW2 + b2)

Our neural n-gram models

—~ ™
Architecture:
Input Layer: X = [v(W1)....v(Wk)]
Hidden Layer: h = g(xW! + b!)
L Output Layer: P(w | wi...wk) = softmax(hW2 + b2))
N

[How many parameters do we need? [# of weights and biases]:

Hidden layer with one-hot inputs: W1 € R(kV) xdimh) bl € Rdim(h
Hidden layer with dense inputs: W1 € R(kn)xdmh) bl € Rdim(h)
Output layer (any inputs): W2 € Rdimbxv b2 e RV

With V = 10K, n = 300 (word2vec), dim(h) = 300
k = 2 (trigram): W1 e R20,000x300 or W1 e R600x300 and bie R300
k = 5 (six-gram): W1 e R50,000x300 or W1 € R1500x300 and b1e R300
W2 e R300x10,000 b2 ¢ R10,000

Six-gram model with one-hot inputs: 27,000,460,000 parameters,
with dense inputs: 3,460,000 parameters

Traditional six-gram model: 104x6 = 1024 parameters

Naive (one-hot input)
neural n-gram model

Advantage over non-neural n-gram model:

— The hidden layer captures interactions
among context words
— Increasing the order of the n-gram requires only
a small linear increase in the number of parameters.
dim(W1) goes from (k-dim(V))-dim(h) to ((k+1)-dim(V))-dim(h)
— Increasing the vocabulary also leads only to
a linear increase in the number of parameters

But: With a one-hot encoding and dim(V) = 10K or so,
this model still requires a LOT of parameters to learn.

And: The Markov assumption still holds

Better (dense embeddings input) neural n-
gram model

Advantage over non-neural n-gram model:
— Same as naive neural model, plus:

Advantages over naive neural n-gram model:

— We have far fewer parameters to learn

— Better generalizations: If similar input words have
similar embeddings, the model will predict similar
probabilities in similar contexts:
P(w| the doctor saw the) = P(w|a nurse sees her)

But: This generalization only works if the contexts have similar
words in the same position.
And: The Markov assumption still holds.

Neural n-gram models

Naive neural n-gram models (one-hot inputs) have
similar shortcomings to standard n-gram models
— Models get very large (and sparse) as n increases
— We can’t generalize across similar contexts
— Markov (independence) assumptions are too strict

Better neural n-gram models can be obtained with
dense word embeddings:

— Models remain much smaller

— Embeddings may provide some (limited) generalization
across similar contexts

1D CNNs for text

Text is a (variable-length) sequence of words (word vectors)
[#channels = dimensionality of word vectors]

We can use a 1D CNN to slide a window of n tokens across:
— Filter size n = 3, stride = 1, no padding
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog

The quick brown fox jumps over the lazy dog
— Filter size n = 2, stride = 2, no padding:

The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog

The quick brown fox jumps over the lazy dog

What we have learned today

dLanguage Modeling

dN-gram is a simple language model

JWord2Vec gives embeddings of a word based on its context
(INeural N-gram Language Model

JFeedforward network and CNN for NLP

(INext lecture: Recurrent Neural Network, Sequence-t-
sequence model, and transformer network

