
EECS 230 Deep Learning
Lecture 7: Optimization

Some slides from C. Lee Giles, Sargur Srihari and Ankur Mali

Topics in Optimization
• Role of Optimization in Deep Learning
• Basic Algorithms
• Algorithms with adaptive learning rates
• Optimization strategies and meta-algorithms

Optimization is essential for DL
• Deep Learning is an instance of a recipe:

1. Specification of a dataset
2. A cost function
3. A model
4. An optimization procedure

today

Our focus is on one case of optimization

• Find parameters θ of a neural network that
significantly reduces a cost function J(θ)
– It typically includes:

• a performance measure evaluated on an entire training
set as well as an additional regularization term

Keras for MNIST Neural Network
• # Neural Network
• import keras
• from keras.datasets import mnist
• from keras.layers import Dense
• from keras.models import Sequential
• (x_train, y_train), (x_test, y_test) = mnist.load_data()
• num_classes=10
• image_vector_size=28*28
• x_train = x_train.reshape(x_train.shape[0], image_vector_size)
• x_test = x_test.reshape(x_test.shape[0], image_vector_size)
• y_train = keras.utils.to_categorical(y_train, num_classes)
• y_test = keras.utils.to_categorical(y_test, num_classes)
• image_size = 784 model = Sequential()
• model.add(Dense(units=32, activation='sigmoid', input_shape=(image_size,)))
• model.add(Dense(units=num_classes, activation='softmax'))
• model.compile(optimizer='sgd', loss='categorical_crossentropy',metrics=['accuracy'])
• history = model.fit(x_train, y_train, batch_size=128, epochs=10, verbose=False,validation_split=.1)
• loss,accuracy = model.evaluate(x_test, y_test, verbose=False)

Summary of Optimization Methods

• Movies:
http://hduongtrong.github.io/2015/11/23/coordinate-descent/

Gradient Descent Coordinate Descent SGD

Minimize f(x) wrt a single
variable, xi, then wrt xj etc

m '
g = 1 ∇ (i) (i)L 	 x ,y ,θ()m '

θ∑
i=1

θ← θ−εg

M
g = 1∇

θ
(i) (i)L 	 x ,y ,θ

M∑ ()
i=1

θ← θ−εg

http://hduongtrong.github.io/2015/11/23/coordinate-descent/

Optimization Problem in DL
• Optimization is an extremely difficult task for DL

– Traditional ML: careful design of objective function
and constraints to ensure convex optimization

– When training neural networks, we must confront
nonconvex cases

Batch Gradient Methods

• Batch or deterministic gradient methods:
– Optimization methods that use all training samples

are batch or deterministic methods

• Somewhat confusing terminology
– Batch also used to describe minibatch used by

minibatch stochastic gradient descent
– Batch gradient descent implies use of full training set
– Batch size refers the size of a minibatch

Stochastic or Online Methods
• Those using a single sample are called

Stochastic or on-line
– On-line typically means continually created

samples drawn from a stream rather than
multiple passes over a fixed size training set

• Deep learning algorithms usually use more
than one but fewer than all samples
• Methods traditionally called minibatch or

minibatch stochastic now simply called
stochastic

Ex: (stochastic gradient descent - SGD)

Minibatch Size
• Driven by following:

– Larger batchesàmore accurate gradient
– Multicore architectures are underutilized by

extremely small batches
• Use some minimum size below which there is no

reduction in time to process a minibatch

– If all examples processed in parallel, amount of
memory scales with batch size
• This is a limiting factor in batch size

– GPU architectures more efficient with sizes power of 2
• Range from 32 to 256, sometimes with 16 for large models

Regularizing Effect of Small Batches

• Small batches offer regularization due to noise
added in the process

• Generalization is best for batch size of one
• Small batch sizes require a small learning rate

– Maintains stability due to high variance in
estimate of gradient

• Total run time can be high
– Due to reduced learning rate that requires more

time to observe entire training set

Random Selection of Minibatches
• Crucial to select minibatches randomly for an

unbiased estimate
• Computing expected gradient from a set of

samples requires sample independence
• Many data sets are arranged with successive

samples highly correlated
– E.g., blood sample data set has five samples for

each patient
• Necessary to shuffle the samples

– For a data set with billions of samples shuffle once
and store in shuffled fashion

Example of Simple Random Sampling

• Define the population
• Let the training set have 10,000 examples
• Choose batch size: say 100
• List the population and assign numbers to them
• Use a random number generator to generate a

number in [1,1000]
• Select your sample and shuffle

• Failing to shuffle can seriously impact the training

SGD and Generalization Error
• Minibatch SGD follows the gradient of the true

generalization error

– as long as the examples are repeated
• Implementations of minibatch SGD

– Shuffle once and pass through multiple number of times

J *(q)= E(x ,y)~p
data
(L(f	(x;q),	y))

Topics
• Importance of Optimization in machine learning
• Basic Optimization Algorithms

– SGD, Momentum, Nesterov Momentum
• Algorithms with adaptive learning rates

– AdaGrad, RMSProp, Adam

SGD Follows Gradient Estimate Downhill

Algorithm: SGD update at training iteration k

A crucial parameter is the learning rate ε
At iteration k it is εk

Choice of Learning Rate
Too small learning rate
will take too long

Too large, the next point will
perpetually bounce haphazardly
across the bottom of the well

If gradient is small, then can safely try a
larger learning rate, which compensates
for the small gradient and results in a
larger step size

https://developers.google.com/machine-learning/crash-course/reducing-loss/learning-rate

Need for Decreasing Learning Rate
• True gradient of total cost function

– Becomes small and then 0
• One can use a fixed learning rate

• But SGD has a source of noise
– Random sampling of m training samples

• Gradient does not vanish even when arriving at a minimum
– Common to decay learning rate linearly

until iteration τ: εk=(1-α)ε0+αετ with α=k/τ
– After iteration τ, it is common to leave ε constant

• Often a small positive value in the range 0.0 to 1.0

Learning Rate Decay
• Decay learning rate

τ: εk=(1-α)ε0+αετ with α=k/τ
• Learning rate is calculated at each update

– (e.g. end of each mini-batch) as follows:

• Where lrate is learning rate for current epoch
• initial_lrate is specified as an argument to SGD
• decay is the decay rate which is greater than zero and
• iteration is the current update number

Momentum Method

• SGD is a popular optimization strategy but it
can be slow

• Momentum method accelerates learning, when:
– Facing high curvature
– Noisy gradients

• It works by accumulating the moving average
of past gradients and moves in that direction
while exponentially decaying

Gradient Descent with Momentum

• Now can set a higher learning rate

• Gradient descent with momentum converges
faster than standard gradient descent

• Taking large steps in w2 direction and small
steps in w1 direction slows down algorithm

w2

w1

• Momentum reduces oscillation in w2 direction

https://www.andreaperlato.com/aipost/gradient-descent-with-momentum/

Momentum Definition
• Introduce velocity variable v
• This is the direction and speed at which

parameters move through parameter space
• Name momentum comes from physics & is mass

times velocity
• The momentum algorithm assumes unit mass

• A hyperparameter α ε [0,1) determines
exponential decay of v

Momentum Update Rule

• The update rule is given by

• The velocity v accumulates the gradient

elements
• The larger α is relative to ε, the more

previous gradients affect the current direction
• The SGD algorithm with momentum is next

Momentum

Gradient Step

Momentum Step

Actual Step

SGD Algorithm with Momentum
Algorithm: SGD with momentum

Keras: The learning rate can be specified via the lr argument and
the momentum can be specified via the momentum argument.

Momentum
• SGD with momentum

Contour lines depict a quadratic loss function
with a poorly conditioned Hessian matrix.
Red path cutting across the contours depicts
path followed by momentum learning rule as
it minimizes this function

• Comparison to SGD without momentum
At each step we show path that would
be taken by SGD at that step
Poorly conditioned quadratic objective
Looks like a long narrow valley
with steep sides
Wastes time

Nesterov Momentum
• A variant to accelerate gradient, with update

• where parameters α and ε play a similar role as in the
standard momentum method

– Difference between Nesterov and standard
momentum is where gradient is evaluated.
• Nesterov gradient is evaluated after the current velocity is

applied.
• One can interpret Nesterov as attempting to add a

correction factor to the standard method of momentum

Nesterov Momentum

Accumulated Gradient Correction

New Accumulated Gradient

q First take a step in the direction of the accumulated
gradient

q Then calculate the gradient and make a correction

Nesterov Momentum

Next step

SGD with Nesterov Momentum
• A variant of the momentum algorithm

– Nesterov’s accelerated gradient method
• Applies a correction factor to standard method
Algorithm: SGD with Nesterov momentum

This line is added from plain momentum

Summary of Optimization Methods

• Movies:
http://hduongtrong.github.io/2015/11/23/coordinate-descent/

Gradient Descent Coordinate Descent SGD

Minimize f(x) wrt a single
variable, xi, then wrt xj etc

m '
g = 1 ∇ (i) (i)L 	 x ,y ,θ()m '

θ∑
i=1

θ← θ−εg

M
g = 1∇

θ
(i) (i)L 	 x ,y ,θ

M∑ ()
i=1

θ← θ−εg

http://hduongtrong.github.io/2015/11/23/coordinate-descent/

Topics in Optimization
• Role of Optimization in Deep Learning
• Basic Algorithms
• Algorithms with adaptive learning rates

1. AdaGrad
2. RMSProp
3. Adam
4. Choosing the right optimization

algorithm
• Optimization strategies and meta-algorithms

Importance of Learning Rate

• Learning rate is the most difficult hyperparameter
to set
• It significantly affects model performance

• Cost is highly sensitive to some directions in
parameter space and insensitive to others
– Momentum helps but introduces another

hyperparameter
– Other approach

• If direction of sensitivity is axis aligned, have a separate
learning rate for each parameter and adjust them
throughput learning

Heuristic Approaches
• Delta-bar-delta Algorithm (1988)

– Applicable to only full batch optimization
• If partial derivative of the loss wrt to a parameter remains

the same sign, the learning rate should increase
• If the partial derivative changes sign, the learning rate

should decrease

• Recent Incremental mini-batch methods
– Adapt learning rates of model parameters

1.AdaGrad
2.RMSProp
3.Adam

Motivation

Nice (all features are equally important)

Motivation

Harder

AdaGrad
• Individually adapts learning rates of all parameters

– Scale them inversely proportional to the sum of the
historical squared values of the gradient

• The AdaGrad Algorithm:

Performs well for some but not all deep learning

RMSProp
• AdaGrad is good when the objective is convex.
• AdaGrad might shrink the learning rate too

aggressively, we want to keep the history in mind
• We can adapt it to perform better in non-convex

settings by accumulating an exponentially decaying
average of the gradient

RMSProp
• Modifies AdaGrad for a nonconvex setting

– Changes gradient accumulation into a exponentially
weighted moving average

– Converges rapidly when applied to a convex function
The RMSProp Algorithm

RMSProp Combined with Nesterov

Algorithm: RMSProp with Nesterov momentum

RMSProp is Popular

• RMSProp is an effective practical optimization
algorithm

• Common optimization method for deep
learning practitioners

Adam: Adaptive Moments

• Another adaptive learning rate optimization
algorithm

• Variant of RMSProp with momentum
• Generally robust to the choice of

hyperparameters

Adam Optimizer
Adam Algorithm

Performance on Multilayer NN

Training of multilayer neural networks on MNIST images. (a) Neural networks using
dropout stochastic regularization. (b) Neural networks with deterministic cost function.

Performance with CNN

Convolutional neural networks training cost.
(left) Training cost for the first three epochs.
(right) Training cost over 45 epochs.
CIFAR-10 with c64-c64-c128-1000 architecture.

Choosing the Right Optimizer

• We have discussed several methods of
optimizing deep models by adapting the
learning rate for each model parameter

• Which algorithm to choose?
– No consensus

• Most popular algorithms actively in use:
– SGD, SGD with momentum, RMSProp, RMSProp

with momentum, AdaDelta and Adam
– Choice depends on user’s familiarity with algorithm

Topics in Second Order Methods
1. Overview
2. Newton’s Method
3. Other: Conjugate Gradients

– Nonlinear Conjugate Gradients
4. Other: BFGS

– Limited Memory BFGS

Why Second-order Methods?
• Better direction

• Better step-size
– A full step jumps directly to the minimum of the local

squared approx.
– often a good heuristic
– additional step size reduction and dampening are

straight-forward

Issues with Second-order Methods

• Computational expensive, even for approximation
methods

• Rarely used for large scale problems

• Methods include:
• Newton’s method
• Conjugate gradients
• Nonlinear conjugate gradients
• Broyden-Fletcher-Goldfar-Shanno (BFGS)
• Limited Memory BFGS

• Major issue is size of the Hessian

Overview
• Second order methods for training deep

networks
• Objective function examined is

empirical risk:
– Empirical risk, with m training examples, is

J(q)= E
(x ,y)~p d̂ata m i=1

m

(L(f (x;q), y))= 1åL(f (x(i);q), y(i))

f (x ; θ) is the predicted output when the input is x
y is target output

L is the per-example loss function

– Methods extend readily to other objective functions
such as those that include parameter regularization

Newton’s Method

• In contrast to first order gradient methods,
second order methods make use of second
derivatives to improve optimization

• Most widely used second order method is
Newton’s method

• It is described in more detail here emphasizing
neural network training

• Based on Taylor’s series expansion to
approximate J(θ) near some point θ0 ignoring
derivatives of higher order

Newton Update Rule
• Taylor’s series to approximate J(θ) near θ0

• where H is the Hessian of J wrt θ evaluated at θ0

• Solving for the critical point of this function we
obtain the Newton parameter update rule

– Thus for a quadratic function (with positive definite
H) by rescaling the gradient by H-1 Newton’s method
directly jumps to the minimum

– If objective function is convex but not quadratic
(there are higher-order terms) this update can be
iterated yielding the training algorithm given next

0 0 q 0 2 0 0
J(q)	» J(q)+(q -q)T	Ñ J(q)+ 1(q -q)T	H(q -q)

q* = q - H	-1Ñ J (q)
0 q 0

Training Algorithm associated with
Newton’s Method

Algorithm: Newton’s method with objective:

8

m i=1

m

J(q)= 1åL(f (x(i);q), y(i))

Positive Definite Hessian

• For surfaces that are not quadratic, as long as
the Hessian remains positive definite, Newton’s
method can be applied iteratively

• This implies a two-step procedure:
– First update or compute the inverse Hessian (by

updating the qudratic approximation)
– Second, update the parameters according to

q* = q - H	-1Ñ J (q)
0 q 0

Regularizing the Hessian
• Newton’s method is appropriate only when the

Hessian is positive definite
– In deep learning the surface of the objective

function is nonconvex
• Many saddle points: problematic for Newton’s method

• Can be avoided by regularizing the Hessian
– Adding a constant α along the Hessian diagonal

-1
q* = q0 - [H(f (q0)) + aI] Ñq f (q0)

Topics in Optimization
• Role of Optimization in Deep Learning
• Basic Algorithms
• Algorithms with adaptive learning rates
• Approximate second-order methods

