
EECS 230 Deep Learning
Lecture 6: Convolutional Neural Network

Some slides from Yuri Boykov, Olga Veksler and Y. LeCun

Convolutional
Neural Networks (CNNs)
for image classification

- convolutional layers, stride, à trous
- pooling (max and average)
- fully connected layers
- data augmentation
- class activation map (CAM)

A 2D image f[i,j] can be filtered by a 2D kernel h[u,v] to produce
an output image g[i,j]:

This is called a convolution operation and written:

h is called “kernel” or “mask” or “filter” which
representing a given “window function”

2D Convolution

å å
-= -=

++×=
k

ku

k

kv
vjuifvuhjig],[],[],[

fhg =

2D filtering for noise reduction

q Common types of noise:
q Salt and pepper noise:

random occurrences of
black and white pixels

q Impulse noise: random
occurrences of white pixels

q Gaussian noise: variations in
intensity drawn from a
Gaussian normal distribution

Mean filtering

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 0 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 0 0 0 0 0 0 0
0 0 90 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

?

],[yxf],[yxg

10

Mean filtering

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 0 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 0 0 0 0 0 0 0
0 0 90 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

],[yxf],[yxg

10

80

Mean filtering

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 0 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 0 0 0 0 0 0 0
0 0 90 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

],[yxf],[yxg

0 10 20 30 30 30 20 10
0 20 40 60 60 60 40 20
0 30 60 90 90 90 60 30
0 30 50 80 80 90 60 30
0 30 50 80 80 90 60 30
0 20 30 50 50 60 40 20

10 20 30 30 30 30 20 10
10 10 10 0 0 0 0 0

side effect of mean filtering: blurring

Mean filtering

1 1 1
1 1 1
1 1 1

qWhat’s the kernel for a 3x3 mean filter?

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 0 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 0 0 0 0 0 0 0
0 0 90 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

×
9
1

Mean kernel

Gaussian filtering
qA Gaussian kernel gives less weight to pixels further

from the center
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 0 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 0 0 0 0 0 0 0
0 0 90 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

discrete approximation of
a Gaussian (density) function

1 2 1
2 4 2
1 2 1

×
16
1

q NOTE: Gaussian distribution is a synonym for Normal distribution!

Gaussian filtering
qA Gaussian kernel gives less weight to pixels further

from the center
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 0 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 0 0 0 0 0 0 0
0 0 90 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

discrete approximation of
a Gaussian (density) function

1 2 1
2 4 2
1 2 1

×
16
1

We denote such Gaussian kernels by G or GϬ

sG

Mean vs Gaussian filtering

no rotational invariance

Median filter
qA Median Filter operates over a window by selecting

the median intensity in the window.

qWhat advantage does a median filter have over a
mean filter?

qIs a median filter a kind of convolution?

q - No, median filter is non-linear

Comparison:
salt and pepper
noise

Towards Convolutional Neural Networks

…… convolution operation is defined …………

It is written as:
fhg *=

å å
-= -=

--×=
k

ku

k

kv
vjuifvuhjig],[],[],[

å å
-= -=

++×--=
k

ku

k

kv
vjuifvuh],[],[

- You should also remember that convolution is a linear operation
Thus, it can be written as

- CNNs use convolutions as very sparse linear transformations.
- In the context of (large) images, such NN design is motivated by
efficiency and neighborhood processing - we will learn filters

Early Work on CNNs

Fukushima (1980) – Neo-Cognitron
LeCun (1998) – Convolutional Networks (ConvNets)

• similarities to Neo-Cognitron
• success on character recognition

Other attempts at deeply layered Networks trained with
backpropagation
• not much success (e.g. very slow, diffusing/vanishing gradient)

Lately - significant training improvements
• various tricks (batch normalization, drop-outs, residual links, etc.)

Convolutional Network: Motivation

Consider a fully connected
network (most weights W[i,j] ≠ 0)

Example: 200 by 200 image,
4x104 connections to one
hidden unit

For 105 hidden units → 4x109

connections
But distant pixels are unrelated

(correlations are mostly local)
Do not waste resources by

connecting unrelated pixels

inp
ut

lay
er hidden layer

Convolutional Network: Motivation

Connect only pixels in a local
patch, say 10x10

For 200 by 200 image, 102

connections to one hidden
unit

For 105 hidden units → 107

connections
• contrast with 4x109 for fully

connected layer
• factor of 400 decrease

Convolutional Network: Motivation
• Intuitively, each neuron learns a

good feature (a filter) in one
particular location

feature 1

feature 2
• If a feature is useful in one image

location, it should be useful in all other
locations
• stationarity: statistics is similar

at different locations

• Idea: make all neurons detect the
same feature at different positions

• i.e. share parameters (network weights)
across different locations

• greatly reduces the number of tunable
parameters to learn red connections have equal weight

green connections have equal weight
blue connections have equal weight

-1

2
-2
0

2
1

-2
0
0 1

2
2
1

2
-1

2
-1
1

3

2
2
2

2
-3

2
-1
2

feature 3

ConvNets: Weight Sharing
Much fewer parameters to learn
For 105 hidden units and 10x10 patch
- 107 parameters to learn without sharing
- 102 parameters to learn with sharing

Does not depend
on the number of

hidden units

*
-1 0 1
-1 0 1
-1 0 1

=

Filtering via Convolution Recap
Recall filtering with convolution for feature extraction

Convolutional Layer
Same as convolution with

some fixed filter
But here the filter

parameters
will be learned

Convolutional Layer
convolution kernel

size

input output

Convolutional Layer
convolution kernel

size

input output

Convolutional Layer
convolution kernel

size

input output

Convolutional Layer
convolution kernel

size

input output

Convolutional Layer
convolution kernel

size

input output

Convolutional Layer
convolution kernel

size

input output

Convolutional Layer
convolution kernel

size

input output

Convolutional Layer
convolution kernel

size

input output

Convolutional Layer
convolution kernel

size

input output

Convolutional Layer
convolution kernel

size

input output

Convolutional Layer
convolution kernel

size

input output

Convolutional Layer
convolution kernel

size

input output

Convolutional Layer
convolution kernel

size

input output

Convolutional Layer - Size Change
Output is usually slightly smaller because the borders of the

image are left out

If want output to be the same size, zero-pad the input

W x H
input size

(W-m+1) x (H-m+1)

m x m
kernel size

output size ?

Convolutional Layer - Stride
Can apply convolution only to some

pixels (say every second)
• output layer is smaller

Example
• stride = 2 means apply convolution

every second pixel
• makes output image approximately

twice smaller in each dimension
– image not zero-padded in this example

strided convolution
minimizes information sharing/duplication

(overlap of kernel windows in the input)
but also reduces spatial resolution of the output

Convolutional Layer - Dilation

Use only subset of points within the kernel’s window

atrous convolution
a.k.a. dilated convolution

larger receptive field (5x5) for output elements
while effectively using smaller kernels (3x3)

It maybe helpful to increase kernel size
to enlarge “receptive field ”

for each element of the output

But larger kernels could be expensive…

It often makes sense to combine atrous convolution with stride

(Fr. à trous – hole)

Convolutional Layer – Feature Depth

Input image is usually color, has 3 channels or depth 3

Convolve 3D image with 3D filter

Convolutional Layer – Feature Depth

75 parameters

Convolutional Layer – Feature Depth
Each convolution step is a 75 dimensional dot product

between the 5x5x3 filter and a piece of image of size 5x5x3
Can be expressed as wtx, 75 parameters to learn (w)
Can add bias wtx + b, 76 parameters to learn (w,b)

Convolutional Layer

Convolve 3D image with 3D filter
• result is a 28x28x1 activation map, no zero padding used

input output
our notation for
such conv. layer

/ kernel

Convolutional Layer
One filter is responsible for

one feature type
Learn multiple filters
Example:

• 10x10 patch
• 100 filters
• only 104 parameters to learn

Convolutional Layer
Consider one extra filter

input output
our notation for
such conv. layer
with two filters

/ kernel

Output from 2 kernels
of shape 5x5x3

Convolutional Layer

• Stack them to get new 28x28x6 “image”

• If have 6 filters (each of size 5x5x3) get 6 activation
maps, 28x28 each

input output
our notation for
such conv. layer
with six filters

a bank of 6 kernels
of shape 5x5x3

Convolutional Layer

Apply activation function (say ReLu) to the activation map

a bank of 6 kernels
of shape 5x5x3

Several Convolution Layers
Construct a sequence of convolution layers interspersed

with activation functions

Convolutional Layer
1x1 convolutions make perfect sense
Example

• Input image of size 56x56x64
• Convolve with 32 filters, each of size 1x1x64

shape of each
1x1x64 kernel

64
applying

a bank of 32
1x1x64 filters/kernels

Convolutional Layer vs Fully Connected
For example, assume that we applied ReLU to the activation maps

The convolution is a linear transform.
So, we can equivalently express it via

matrix multiplication for some matrix W.

m = 32x32x3
n = 28x28x6

How large is W ?

vs. 450 parameters
for 6 kernels 5x5x3

1.4m parameters

=

a bank of 6 kernels
of shape 5x5x3

Convolution is highly
sparse special case.

GOOD BADBAD BAD

too noisy too
correlated structure

lack

Check Learned Convolutions
• Good training: learned filters exhibit structure and are

uncorrelated

Convolutional Layer Summary
Local connectivity
Weight sharing
Handling multiple input/output channels
Retains location associations
Transforms 3D tensor into 3D tensor (tensor flow)

filters = #output (activation) maps # input channels

Local connectivity
Weight sharing

filter size,
stride

Pooling Layer

Say a filter is an eye detector
Want detection to be robust to precise eye location

Pooling Layer
Pool responses at different locations

• by taking max, average, etc.
• robustness to exact spatial location
• also larger receptive field (see more of the input)

• Usually pooling applied
with stride > 1

• This reduces resolution
of output map

• But we already lost
resolution (precision)
by pooling

Pooling Layer: Max Pooling Example

our notation for
2 by 2 pooling layer

with stride 2

- pooling can be interpreted as downsampling
Hölder
mean- general forms of averaging can be used, e.g.

where p=∞ implies max and p=1 arithmetic mean

Pooling Layer

Pooling usually applied to each activation map separately

Basic CNN example (à	la	LeNet -1998)
32

x3
2

1

greyscale
image

6
6 16

16

400
120

14
x1

4

28
x2

8

10
x1

0

5x
5

10-class
probabilities

84

NOTE: transformation of multi-dimensional arrays (tensors)

First CNN architectures for classification
- first CNNs (1982-89)

(a.k.a. convNets)

Handwritten digit recognition with a back-propagation network
Y. LeCun et al - NIPS 1989

Handwritten digit recognition with a back-propagation network
Y. LeCun, L. Bottou, Y. Bengio, P. Haffner - Proc.of IEEE 1998

Neocognitron: A new algorithm for pattern recognition
tolerant of deformations and shifts in position
K. Fukushima, S. Miyake - Pattern Recognition 1982

- LeNet (1998)

https://youtu.be/FwFduRA_L6Q

- LeNet (1998)

Handwritten digit recognition with a back-propagation network
Y. LeCun et al - NIPS 1989

Neocognitron: A new algorithm for pattern recognition
tolerant of deformations and shifts in position
K. Fukushima, S. Miyake - Pattern Recognition 1982

First CNN architectures for classification
- first CNNs (1982-89)

(a.k.a. convNets)

https://youtu.be/FwFduRA_L6Q

Deep CNN architectures for classification

ImageNet classification with deep convolutional neural networks
Alex Krizhevsky, Ilya Sutskever, Geoffrey Hinton - NIPS 2012.

- AlexNet (2012)

- VGG (2014)

- ResNet (2016)

Very Deep Convolutional Networks for Large-Scale Image Recognition
K. Simonyan, A. Zisserman - ICLR 2015

Deep residual learning for image recognition
K. He, X. Zhang, S. Ren, J. Sun. - CVPR 2016

http://www.robots.ox.ac.uk/~vgg/practicals/cnn/index.html

http://www.robots.ox.ac.uk/~vgg/practicals/cnn/index.html

VGG -16
Very Deep Convolutional Networks for
Large-Scale Image Recognition
K. Simonyan, A. Zisserman - ICLR 2015

neurohive.io/en/popular-networks/vgg16/
picture credits

https://neurohive.io/en/popular-networks/vgg16/

ResNet

very deep J

key technical trick

resnet block

(residual link helps gradient descent)

one of the
state of the art
on image net

www.image-net.org
- very large dataset

of labeled images
>14,000,000

Deep residual learning for image
recognition. K. He, X. Zhang, S.
Ren, and J. Sun. CVPR 2016

FashionMNIST classification example
28

x2
8

1

greyscale
image

20
20

50
50

800 500 10

12
x1

2

24
x2

4

8x
8 4x
4

10-class
probabilities

FashionMNIST classification example

Class-activation Map (CAM)

CVPR 2016: “Learning Deep Features for Discriminative Localization”
B.Zhou, A.Khosla, A. Lapedriza, A.Oliva, A.Torralba

soft-max
image-level
prediction

(CE trained)linear
discriminator

Wk=(w1 ,...,wn)
for “terrier”

image-level
feature f

pixel-level
features fp

NOTE: motivates ideas for object localization, as well as
image-level supervision for semantic segmentation

interpret as
pixel-level
network “attention”

terrier CAM

pixel-level logits

logits

global
average
pooling

last layer with
spatial resolution

