
EECS 230 Deep Learning
Lecture 5: Training Neural Network

Some slides from Feifei Li

From last lectures:
Shallow & Deep Neural network, Losses, Optimization

Depicting shallow neural networks

<latexit sha1_base64="4mwMW+AxXHfhTyI/kaVAw9s5G24=">AAAWsniclZhbb9s2FIDV7tZ1t3TD8rIXYUGBYesMu+26vQxok6a3pIvTxEmaODUomZLZUJSiS2JX8D/Zr9nr9gf2b3YoyWZ1DvMwA4np833i5ZDUzUukyPJu999r1z/48KOPP7nx6c3PPv/iy69Wbn19kMVF6vOBH8s4PfJYxqVQfJCLXPKjJOUs8iQ/9M42ND+84GkmYrWfzxJ+GrFQiUD4LIfQaOXBzP3dHSYTMSq785/qQm8+0f+aX3f1r7uLX/f0r3vz0cpat9OtPi4t9JrCmtN8+qNb346H49gvIq5yX7IsO+l1k/y0ZGkufMnnN4dFxhPmn7GQn0BRsYhnp2U1wLl7GyJjN4hT+FO5W0XfP6JkUZbNIg/MiOWTDDMdtLGTIg9+Oy2FSoqcK79uKCikm8euzpY7Fin3czmDAvNTAX11/QlLmZ9DTm8OFb/04yhialwO1zd35+XQ46FQJT8vqvzO521ns3I4FK8y1p/vL2sROY/EO04qqRRdyRUCD+dlyTthBwPBAYgOJyBWPIM6dX68wO0hCutJAgbuxVPoXOC+mpOqVc5DyElLOyYaFBLJpy1rg1gwlVFL2QPFdW+7GvA8hVmArsIXR3OwlzA1XxyX82meRmWmY7iFlKmQV03AkH0m9YjahiqkhEP9lvUHtl4xddYkLk6qrqY6gqz9tO3kKc2LGredKoIsWIRh26oiyJKw+8csYpDlpjyCAUeujthVobAqyMLsp7HXbjvREbw2pwnsl7a3WZL0XzCUER2A3ae/BVM+b+sb8dJ2F8m5qHxd4FN3ApPVPoSlYT2sRSMwqiY2p2aVK2TSbEEojS/bpu6NReWJaA9QB/CmK1Khgve0O1UJlqwOD+/AUNNC8pOfO7/w6WnZ1dtG/yPZhIqyIrFVpMP/o6IxXG/w+oIInrxYosmDQDV5sYTzO5o6luKFrSPV3EFBKCZFPkPbX4SqfUwVwZ2NI9RXCOh64ZsJhSY5CNqyDmgZvuHKaVlAPhqkX4/Rl3FWpJyc/NB6hkil69NiKvTFqn1ClVponze4XB4FZbg4XPArDvdQRr06n15cqDFLUTKnekqnb4ZZDlvMtvurKa+LVivk51tNe9AvmJ3C9/n5aAvPR0gs6khUF9yqWOuSxLK0B3Utl+v7PSu33vxIlnZoce2mJPU2vbTbFveKHvDzbUtvt4lHLOpIVFfTQ+oRy9Ie1GXP47ZtFBbXbkpS7yKPVtviLk20/IP9Cc+Zvk2K5Vjf9sVyWIewmFMxt4pxxEMk1iEsRkXbgt9Y2RNw8WhbdQiL/Uy0NR3A0phLPIQ6hMV6C7fNJobVbYu6bVeZTCbIrENYfMoiPOo6hMWQiqFVPGNJgsQ6RPI4wXmc0DwmWEpsEp6RxDIjZEnZFlQ6iduSDmBpilqbWhqDHshYoQabIJYzuvIy68pTaBUruooHtoYHVzScM1ShDmBph+wxd7hj3WQeTjHcZtmSnAhkJTSBfez0qbO4+/OCktzJecHM0Bmll4ZeUnpo6CGlqaHkicALXhlKnk684MLQC0oPDD2gtDC0oHRg6IDSwNCA0ieGPqHUN9SndMPQDUpzQ8kdKVwRDN2ndGLohNIjQ48ofW3oa0qfGfqM0mNDjyl9Z+g7Sh8Z+ohSZiijdNPQTUq5oeTVgResG7pOqWcoefaDvWZon9LE0ITSx4Y+pnRsKHkqhuuZoeT2Bi6MhkpKnxv6nFJhKHl+84KXhr6kNDI0ovSFoS8ofWvoW0qfGvqU0tBQ8m4A7k4M3aPUvAUqM0p3Dd2l9NzQc/t7Ab6cRs+2MHdMBTuUxobGlG4ZSp4U4FbC0DNyPxmo5qy2eNtEzmuBWnILazK+OJrkPFBLbmHN2WlxNDk/BWrJJ6TrmwfLFymQUjjTj1bWevgtLC0c3O30HnTu795fe7jevKG94XznfO/84PScX52HzjOn7wwc3/nT+cv52/ln9f7q8Spb9Wv1+rXmmG+c1mdV/ge0FuRK</latexit>

y = �0 + �1h1 + �2h2 + �3h3

<latexit sha1_base64="OexYJKlfph/YpHs7sx68KlEAH9c=">AAAXC3iclZhbU9w2FICX9JbSG2mnvOTFU5pOp00ZlqSXl84kEHKDFAgskLCEkb2yV0GWjS3DEs/+hE5/TN86fe2P6A/pe49s7wqfIx6yM8mK8326Hcm21n4qRa6Xlv6dufbOu++9/8H1D2c/+viTTz+bu/H5Xp4UWcB7QSKT7MBnOZdC8Z4WWvKDNOMs9iXf909WDd8/41kuErWrL1J+FLNIiVAETEPoeO6P4XHZHXvf/Or1Yz8ZlWx82NdDrhmEl8be9970r+54dOT1+7NQYdldYblVYflShTvuCndaFe6YCsdzC0uLS9XHo4VuU1joNJ+t4xtfDvqDJChirnQgWZ4fdpdSfVSyTItA8vFsv8h5yoITFvFDKCoW8/yorDI39m5BZOCFSQb/lPaq6OUaJYvz/CL2wYyZHuaYmaCLHRY6/OWoFCotNFdB3VFYSE8nnlkGbyAyHmh5AQUWZALG6gVDlrFAw2LN9hU/D5I4ZmpQ9lfWtsdl3+eRUCU/LaqFG4/bzlrlcCheZaw82Z22IjSPxRtOGqkU08gVAo/GZckXo0UMBAcgFjkBieI5tGny44deF1HYqBJwWW+MPhjPx6RppXkEOWlpL4kGhVTyUctaJRYsZdxSdkDxvFueAVxnsAowVPjiaA12UqbGk3qaj3QWl7mJ4R4ypiJedQFTDpg0M2obqpASqgYt6zdsPWfqpElcklZDzUwEWbtZ29EZzYsatJ0qgizYhFHbqiLIknBbGbCYQZab8jFMOPZMxK0KhVVBNuZWlvjtvlMTwXtzlML10vbWSpL+M4YyYgJw9ZlvwVTA2/pqMrW9SXLOKt8U+MgbwmK1q7Asqqc16QRm1cTG1KxyhUyaLQhlyXnbNKNxqDwV7QmaAL7oikyo8JJ2uyrBljXh/m2YalZIfvjD4o98dFQumcvG/EeyCQ3lRepqyITfoqEBPMjw/oIIXrxEosWDQLV4iYT7O1o6luGNbSLV2kFBKCaFvkCXv4hUu04VwYNNYjRWCJh24ZsJhRY5DNuyCRgZvuGR7NhAAZpkUM8xkEleZJzc/NB+hkilm9tiJszDqn1DlUZo3ze4nNaCMjwczvgV1X2UUb/Op58UasAylMyRWdLRq36u4RJzXf3VktdFpxXx0/WmPxgXrE4RBPz0eB2vR0Qs6kjUFpyBnG1JYjn6g7am2/XyyMr1V9+RrR05XLcpSbvNKN22w71iBPx0wzHaDeIRizoStdWMkHrEcvQHbbnzuOGahcN1m5K0O8mj03a4UxNt/3DXnETNMSmRA3PsS2S/DmFRU1E7xSTmERLrEBbjom3B31jZEfDwaFt1CItbuWhrJoClAZd4CnUIi/Ul3DabGFY3HOqGW2UyHSKzDmHxEYvxrOsQFiMqRk7xhKUpEusQyeMQ53FI85hiKXVJeEVSx4qQLeXaUNkwaUsmgKUR6m3k6AxGIBOFOmyCWM7pzsudO0+hXazoLu65Ou5d0bFmqEETwNImuca8/qbzIvNxiuGY5UpyKpCV0gRuYWeLOpPTnx+W5CTnhxeWXlB6buk5pfuW7lOaWUp+Efjhc0vJrxM/PLP0jNI9S/coLSwtKO1Z2qM0tDSk9KGlDykNLA0oXbV0lVJtKTmRwhPB0l1Kh5YOKT2w9IDSF5a+oPSxpY8pfWnpS0rfWPqG0vuW3qeUWcooXbN0jVJuKXl14Icrlq5Q6ltKfvvBtWbpFqWppSmlDyx9QOnAUvKrGJ5nlpLjDTwYLZWUPrH0CaXCUvL7zQ+fWfqM0tjSmNKnlj6l9LWlryl9ZOkjSiNLybsBOJ1YukOpfQtU5pRuW7pN6amlp+73Any6jL5rY27aBjYpTSxNKF23lPxSgKOEpSfkPBmq5q42edtE7muhmnIHazI+qU1yHqopd7Dm7jSpTe5PoZryIRn62t70RQqkFO70x3MLXfwWlhb2lhe7Py3e3b67cG+leUN7vXOz81Xn206383PnXudxZ6vT6wSd/2Zuznw9c2v+9/k/5/+a/7tWr800db7otD7z//wPvt8CjQ==</latexit>

h1 = a[✓10 + ✓11x]

h2 = a[✓20 + ✓21x]

h3 = a[✓30 + ✓31x]

Each parameter multiplies its source and adds to its target

With enough hidden units

q… we can describe any 1D function to arbitrary accuracy

Example of Multi Layer Perceptron (MLP)
Bias

vector

Weight
matrix

Perceptron approximation:

Consider two probability distributions
over two classes (e.g. bass or salmon) : and

(binary)
Cross-entropy loss:

salmonbass

(binary case)

Cross-Entropy Loss (related to logistic regression loss)

Distance between two distributions can be evaluated via cross-entropy
(equivalent to KL divergence for fixed target)

Consider two probability distributions
over K classes (e.g. bass, salmon, sturgeon) : and

K-label perceptron’s output: for example

sum of Negative Log-Likelihoods (NLL)

salmonbass sturgeon

Multi-valued label gives one-hot distribution

k-th
index

Total loss:
cross entropy

(general multi-class case)

Cross-Entropy Loss

From last lecture: Gradient Descent

qExample: for a function of two variables

update equation for a point x=(x1,x2)

x1

x2

L(x1,x2)

Stop at a local minima where

From last lecture: Backpropogation

w
x

v
y

h=a+b c=uh

already
computed

∂c
∂L

∂a ∂h ∂a ∂h
∂L = ∂L ∂h = ∂L

∂b ∂h ∂b ∂h
∂L = ∂L ∂h = ∂L

∂w ∂a ∂w ∂a
∂L = ∂L ∂a = ∂Lx

a=wx

∂v ∂b ∂v ∂b
b= vy

∂L = ∂L ∂b= ∂Ly

∂y ∂b ∂y ∂b
∂L = ∂L ∂b= ∂Lv

∂h ∂c ∂h ∂c
∂L = ∂L ∂c = ∂Lu

• Someof these partial derivatives are intermediate
• their values will not be used for gradient descent

direction of computation

∂x ∂a ∂x ∂a
∂L = ∂L ∂a= ∂Lw

Today

qDeep learning hardware
qDeep learning software
qTricks for training neural networks

qActivation function
qData Preprocessing
qBatch normalization
qTransfer learning

Deep Learning Hardware

Inside a computer

Spot the CPU!
(central processing unit)

This image is licensed under CC-BY 2.0

https://creativecommons.org/licenses/by/2.0/deed.en

Spot the GPUs!
(graphics processing unit)

This image is licensed under CC-BY 2.0

https://creativecommons.org/licenses/by/2.0/deed.en

CPU vs GPU
Cores Clock

Speed
Memory Price Speed (throughput)

CPU
(Intel Core
i9-7900k)

10 4.3
GHz

System
RAM

$385 ~640 GFLOPS FP32

GPU
(NVIDIA
RTX 3090)

10496 1.6
GHz

24 GB
GDDR6X

$1499 ~35.6 TFLOPS FP32

CPU: Fewer cores,
but each core is
much faster and
much more
capable; great at
sequential tasks

GPU: More cores,
but each core is
much slower and
“dumber”; great for
parallel tasks

Example: Matrix Multiplication

A x B
B x C

A x C

=

cuBLAS::GEMM (GEneral Matrix-to-matrix Multiply)

CPU vs GPU in practice

Data from https://github.com/jcjohnson/cnn-benchmarks

(CPU performance not
well-optimized, a little unfair)

66x 67x 71x 64x 76x

CPU vs GPU in practice

Data from https://github.com/jcjohnson/cnn-benchmarks

cuDNN much faster than
“unoptimized” CUDA

2.8x 3.0x 3.1x 3.4x 2.8x

CPU vs GPU
Cores Clock

Speed
Memor
y

Price Speed

CPU
(Intel Core
i7-7700k)

10 4.3 GHz System
RAM

$385 ~640 GFLOPs FP32

GPU
(NVIDIA
RTX 3090)

10496 1.6 GHz 24 GB
GDDR
6X

$1499 ~35.6 TFLOPs FP32

GPU
(Data Center)
NVIDIAA100

6912 CUDA,
432 Tensor

1.5 GHz 40/80
GB
HBM2

$3/hr
(GCP)

~9.7 TFLOPs FP64
~20 TFLOPs FP32
~312 TFLOPs FP16

TPU
Google Cloud
TPUv3

2 Matrix Units
(MXUs) per
core, 4 cores

? 128 GB
HBM

$8/hr
(GCP)

~420 TFLOPs
(non-standard FP)

CPU: Fewer cores,
but each core is
much faster and
much more
capable; great at
sequential tasks

GPU: More cores,
but each core is
much slower and
“dumber”; great for
parallel tasks

TPU: Specialized
hardware for deep
learning

Programming GPU

● CUDA (NVIDIA only)
○ Write C-like code that runs directly on the GPU
○ Optimized APIs: cuBLAS, cuFFT, cuDNN, etc

● OpenCL
○ Similar to CUDA, but runs on anything
○ Usually slower on NVIDIA hardware

● HIP https://github.com/ROCm-Developer-Tools/HIP
○ New project that automatically converts CUDA code to

something that can run on AMD GPUs

https://github.com/ROCm-Developer-Tools/HIP

CPU / GPU Communication

Model
is here

Data is here

CPU / GPU Communication

Model
is here

Data is here

If you aren’t careful, training can
bottleneck on reading data and
transferring to GPU!

Solutions:
- Read all data into RAM
- Use SSD instead of HDD
- Use multiple CPU threads

to prefetch data

Deep Learning Software

A zoo of frameworks!

Caffe
(UC Berkeley)

Torch
(NYU / Facebook)

Theano
(U Montreal)

TensorFlow
(Google)

Caffe2
(Facebook)
mostly features absorbed
by PyTorch

PyTorch
(Facebook)

CNTK
(Microsoft)

PaddlePaddle
(Baidu)

MXNet
(Amazon)
Developed by U Washington, CMU, MIT,
Hong Kong U, etc but main framework of
choice at AWS

And others...

Chainer
(Preferred Networks)
The company has officially migrated its research
infrastructure to PyTorch

JAX
(Google)

A zoo of frameworks!

Caffe
(UC Berkeley)

Torch
(NYU / Facebook)

Theano
(U Montreal)

TensorFlow
(Google)

Caffe2
(Facebook)
mostly features absorbed
by PyTorch

PyTorch
(Facebook)

CNTK
(Microsoft)

PaddlePaddle
(Baidu)

MXNet
(Amazon)
Developed by U Washington, CMU, MIT,
Hong Kong U, etc but main framework of
choice at AWS

And others...

Chainer
(Preferred Networks)
The company has officially migrated its research
infrastructure to PyTorch

JAX
(Google)

We’ll focus on this

Deep Learning Framework

(1) Quick to develop and test new ideas
(2) Automatically compute gradients
(3) Run it all efficiently on GPU (wrap cuDNN, cuBLAS,

OpenCL, etc)

Computational Graphs
x y z

*

a
+

b

Σ

c

Numpy

Computational Graphs
x y z

*

a
+

b

Σ

c

Numpy

Computational Graphs
x y z

*

a
+

b

Σ

c

Numpy

Bad:
- Have to compute

our own gradients
- Can’t run on GPU

Good:
Clean API, easy to
write numeric code

Computational Graphs
x y z

*

a
+

b

Σ

c

Numpy PyTorch

Looks exactly like numpy!

Lecture 6 - 40

Computational Graphs
x y z

*

a
+

b

Σ

c

Numpy PyTorch

PyTorch handles gradients for us!

Computational Graphs
x y z

*

a
+

b

Σ

c

Numpy PyTorch

Trivial to run on GPU - just construct
arrays on a different device!

PyTorch
(More details)

Pytorch fundamental concepts

qtorch.Tensor: Like a numpy array, but can run on GPU

qtorch.autograd: Package for building computational
graphs out of Tensors, and automatically computing
gradients

qtorch.nn.Module: A neural network layer; may store
state or learnable weights

Pytorch:Tensor

Running example: Train
a two-layer ReLU
network on random data
with L2 loss

Create random tensors
for data and weights

Pytorch:Tensor

Forward pass: compute
predictions and loss

Pytorch:Tensor

Backward pass:
manually compute
gradients

Pytorch:Tensor

Gradient descent
step on weights

Pytorch:Tensor

To run on GPU, just use a
different device!

Pytorch:Tensor

Creating Tensors with
requires_grad=True enables
autograd

Operations on Tensors with
requires_grad=True cause PyTorch
to build a computational graph

Pytorch:Autograd

Forward pass looks exactly
the same as before, but we
don’t need to track
intermediate values -
PyTorch keeps track of them
for us in the graph

Pytorch:Autograd

Compute gradient of loss
with respect to w1 and w2

Pytorch:Autograd

Make gradient step on weights, then zero
them. Torch.no_grad means “don’t build a
computational graph for this part”

Pytorch:Autograd

PyTorch methods that end in underscore
modify the Tensor in-place; methods that
don’t return a new Tensor

Pytorch:Autograd

Define your own autograd
functions by writing forward
and backward functions for
Tensors

Use ctx object to “cache” values for
the backward pass, just like cache
objects from A2

PyTorch: NewAutograd Functions

PyTorch: NewAutograd Functions
Define your own autograd
functions by writing forward
and backward functions for
Tensors

Use ctx object to “cache” values for
the backward pass, just like cache
objects from A2

Define a helper function to make it
easy to use the new function

PyTorch: NewAutograd Functions

Can use our new autograd
function in the forward pass

PyTorch: NewAutograd Functions

In practice you almost never need
to define new autograd functions!
Only do it when you need custom
backward. In this case we can just
use a normal Python function

PyTorch: nn

Higher-level wrapper for
working with neural nets

Use this! It will make your life
easier

Define our model as a
sequence of layers; each
layer is an object that
holds learnable weights

PyTorch: nn

Forward pass: feed data to
model, and compute loss

PyTorch: nn

Forward pass: feed data to
model, and compute loss

torch.nn.functional has useful
helpers like loss functions

PyTorch: nn

Backward pass: compute
gradient with respect to all
model weights (they have
requires_grad=True)

PyTorch: nn

Make gradient step on
each model parameter
(with gradients disabled)

PyTorch: nn

Use an optimizer for
different update rules

PyTorch: nn

After computing gradients, use
optimizer to update params
and zero gradients

PyTorch: nn

PyTorch: nn
Define new Modules
A PyTorch Module is a neural net
layer; it inputs and outputs Tensors

Modules can contain weights or other
modules

You can define your own Modules
using autograd!

PyTorch: nn
Define new Modules

Define our whole model
as a single Module

PyTorch: nn
Define new Modules

Initializer sets up two
children (Modules can
contain modules)

PyTorch: nn
Define new Modules

Define forward pass using
child modules

No need to define
backward - autograd will
handle it

PyTorch: nn
Define new Modules

Construct and train an
instance of our model

PyTorch: nn
Define new Modules
Very common to mix and match
custom Module subclasses and
Sequential containers

PyTorch: nn
Define new Modules

Define network component
as a Module subclass

PyTorch: nn
Define new Modules

Stack multiple instances of the
component in a sequential

PyTorch: Pretrained Models

Super easy to use pretrained models with torchvision
https://github.com/pytorch/vision

https://github.com/pytorch/vision

PyTorch: torch.utils.tensorboard

This image is licensed under CC-BY 4.0; no changes were made to the image

A python wrapper around
Tensorflow’s web-based
visualization tool.

https://github.com/facebookresearch/visdom
https://creativecommons.org/licenses/by/4.0/

PyTorch: Computational Graphs

Figure reproduced with permission from a Twitter post by Andrej Karpathy.

input image

loss

https://twitter.com/karpathy/status/597631909930242048?lang=en

Model Parallel vs. Data Parallel

Model Parallel minibatch

Data Parallel

Model parallelism:
split computation
graph into parts &
distribute to GPUs/
nodes

Data parallelism: split
minibatch into chunks &
distribute to GPUs/ nodes

Tricks for training neural networks

Where we are now...
Learning network parameters through optimization

Landscape image is CC0 1.0 public domain
Walking man image is CC0 1.0 public domain

Lecture 7 -

http://maxpixel.freegreatpicture.com/Mountains-Valleys-Landscape-Hills-Grass-Green-699369
https://creativecommons.org/publicdomain/zero/1.0/
http://www.publicdomainpictures.net/view-image.php?image=139314&picture=walking-man
https://creativecommons.org/publicdomain/zero/1.0/

Where we are now...

Lecture 7 -

Mini-batch SGD
Loop:
1. Sample a batch of data
2. Forward prop it through the graph

(network), get loss
3. Backprop to calculate the gradients
4. Update the parameters using the gradient

Activation Functions

Lecture 7 -

Activation Functions

Lecture 7 -

Activation Functions
Sigmoid

tanh

ReLU

Leaky ReLU

Maxout

ELU

Lecture 7 -

Activation Functions

Sigmoid

- Squashes numbers to range [0,1]
- Historically popular since they have nice interpretation as a

saturating “firing rate” of a neuron

Lecture 7 -

1. Saturated neurons “kill” the
gradients

sigmoid
gate

x

Lecture 7 -

sigmoid gate

x

What happens when x = -10?

Lecture 7 -

sigmoid gate

x

What happens when x = -10?

Lecture 7 -

sigmoid gate

x

• What happens when x = -10? What happens when x = 0?

Lecture 7 -

sigmoid
gate

x

What happens when x = -10?
What happens when x = 0?
What happens when x = 10?

Lecture 7 -

sigmoid
gate

x

What happens when x = -10?
What happens when x = 0?
What happens when x = 10?

Lecture 7 -

Why is this a problem?
If all the gradients flowing back will be
zero and weights will never change

sigmoid
gate

x

Lecture 7 -

Sigmoid

Lecture 7 -

1. Saturated neurons “kill” the
gradients

2. exp() is a bit expensive

Activation Functions
- Squashes numbers to range [0,1]
- Historically popular since they have nice interpretation as a

saturating “firing rate” of a neuron

Activation Functions

tanh(x)

- Squashes numbers to range [-1,1]
- still kills gradients when saturated :(

[LeCun et al., 1991]

Lecture 7 -

Activation Functions
- Does not saturate (in +region)
- Very computationally efficient
- Converges much faster than

sigmoid/tanh in practice (e.g. 6x)

ReLU
(Rectified Linear Unit)

[Krizhevsky et al., 2012]

Lecture 7 -

ReLU
gate

x

What happens when x = -10?
What happens when x = 0?
What happens when x = 10?

Lecture 7 -

DATA CLOUD active
ReLU

Lecture 7 -

dead ReLU
will never activate
=> never update

DATA CLOUD active
ReLU

dead ReLU
will never activate
=> never update

=> people like to initialize
ReLU neurons with slightly
positive biases (e.g. 0.01)

Lecture 7 -

Activation Functions

Leaky ReLU

[Mass et al., 2013]
[He et al., 2015]

- Does not saturate
- Computationally efficient
- Converges much faster than

sigmoid/tanh in practice! (e.g. 6x)
- will not “die”.

Lecture 7 -

Activation Functions

Leaky ReLU

[Mass et al., 2013]
[He et al., 2015]

- Does not saturate
- Computationally efficient
- Converges much faster than

sigmoid/tanh in practice! (e.g. 6x)
- will not “die”.

Parametric Rectifier (PReLU)

backprop into \alpha
(parameter)

Lecture 7 -

TLDR: In practice:

Lecture 7 -

- Use ReLU. Be careful with your learning rates
- Try out Leaky ReLU

- To squeeze out some marginal gains
- Don’t use sigmoid or tanh

Data Preprocessing

Lecture 7 -

Data Preprocessing

(Assume X [NxD] is data matrix,
each example in a row)

Lecture 7 -

Remember: Consider what happens when
the input to a neuron is always positive...

What can we say about the gradients on w?
Always all positive or all negative :(
(this is also why you want zero-mean data!)

hypothetical
optimal w
vector

zig zag path

allowed
gradient
update
directions

allowed
gradient
update
directions

Lecture 7 -

(Assume X [NxD] is data matrix, each example in a row)

Lecture 7 -

Data Preprocessing

Data Preprocessing

In practice, you may also see PCA and Whitening of the data

(data has diagonal
covariance matrix)

Lecture 7 -

(covariance matrix is the
identity matrix)

Fei-Fei Li & Ranjay Krishna & Danfei Xu Lecture 7 - April 20, 2021

Data Preprocessing

Before normalization: classification loss
very sensitive to changes in weight matrix;
hard to optimize

After normalization: less sensitive to small
changes in weights; easier to optimize

TLDR: In practice for Images: center only

Lecture 7 -

Divide by per-channel std (e.g. ResNet)
(mean along each channel = 3 numbers)

e.g. consider CIFAR-10 example with [32,32,3] images

- Subtract the mean image (e.g. AlexNet)
(mean image = [32,32,3] array)

- Subtract per-channel mean (e.g. VGGNet)
(mean along each channel = 3 numbers)

- Subtract per-channel mean and
Not common
to do PCA or
whitening

Batch Normalization

Lecture 7 -

Batch Normalization
“you want zero-mean unit-variance activations? just make them so.”

consider a batch of activations at some layer. To make
each dimension zero-mean unit-variance, apply:

[Ioffe and Szegedy, 2015]

this is a vanilla
differentiable function...

Lecture 7 -

Input: Per-channel mean,
shape is D

Per-channel var,
shape is D

Normalized x,
Shape is N x D

Batch Normalization [Ioffe and Szegedy, 2015]

XN

D

Lecture 7 -

Input: Per-channel mean,
shape is D

Per-channel var,
shape is D

Normalized x,
Shape is N x D

Batch Normalization [Ioffe and Szegedy, 2015]

Learnable scale and
shift parameters:

Output,
Shape is N x D

Learning = ,
= will recover the

identity function!

Lecture 7 -

Per-channel mean,
shape is D

Per-channel var,
shape is D

Normalized x,
Shape is N x D

Output,
Shape is N x D

Batch Normalization: Test-Time Estimates depend on minibatch;
can’t do this at test-time!

Lecture 7 -

Input:

Learnable scale and
shift parameters:

Learning = ,
= will recover the

identity function!

Input: Per-channel mean,
shape is D

Per-channel var,
shape is D

Normalized x,
Shape is N x D

Batch Normalization: Test-Time

Learnable scale and
shift parameters:

Output,
Shape is N x D

(Running) average of
values seen during training

(Running) average of
values seen during training

Lecture 7 -

During testing batchnorm
becomes a linear operator!
Can be fused with the previous
fully-connected or conv layer

Batch Normalization [Ioffe and Szegedy, 2015]

FC

BN

tanh

FC

BN

tanh

...

Usually inserted after Fully
Connected or Convolutional layers,
and before nonlinearity.

Lecture 7 -

Batch Normalization [Ioffe and Szegedy, 2015]

FC

BN

tanh

FC

BN

tanh

...

Lecture 7 -

- Makes deep networks much easier to train!
- Improves gradient flow
- Allows higher learning rates, faster convergence
- Networks become more robust to initialization
- Acts as regularization during training
- Zero overhead at test-time: can be fused with conv!
- Behaves differently during training and testing: this

is a very common source of bugs!

Transfer learning

“You need a lot of a data if you want to
train/use CNNs”

“You need a lot of a data if you want to
train/use CNNs”

BU
ST
ED

Transfer Learning with CNNs

Transfer Learning with CNNs

AlexNet:
64 x 3 x 11 x 11

(More on this in Lecture 13)

Transfer Learning with CNNs

Test image

(More on this in Lecture 13)

L2 Nearest neighbors in feature space

Transfer Learning with CNNs

Image

MaxPool
Conv-64
Conv-64

MaxPool
Conv-128
Conv-128

MaxPool
Conv-256
Conv-256

MaxPool
Conv-512
Conv-512

MaxPool
Conv-512
Conv-512

FC-1000
FC-4096
FC-4096

1. Train on Imagenet

Donahue et al, “DeCAF: A Deep Convolutional Activation
Feature for Generic Visual Recognition”, ICML 2014
Razavian et al, “CNN Features Off-the-Shelf: An
Astounding Baseline for Recognition”, CVPR Workshops
2014

Transfer Learning with CNNs

Image

MaxPool
Conv-64
Conv-64

MaxPool
Conv-128
Conv-128

MaxPool
Conv-256
Conv-256

MaxPool
Conv-512
Conv-512

MaxPool
Conv-512
Conv-512

FC-1000
FC-4096
FC-4096

1. Train on Imagenet

Image

MaxPool
Conv-64
Conv-64

MaxPool
Conv-128
Conv-128

MaxPool
Conv-256
Conv-256

MaxPool
Conv-512
Conv-512

MaxPool
Conv-512
Conv-512

FC-C
FC-4096
FC-4096

2. Small Dataset (C classes)

Freeze these

Reinitialize
this and train

Donahue et al, “DeCAF: A Deep Convolutional Activation
Feature for Generic Visual Recognition”, ICML 2014
Razavian et al, “CNN Features Off-the-Shelf: An
Astounding Baseline for Recognition”, CVPR Workshops
2014

Transfer Learning with CNNs

Image

MaxPool
Conv-64
Conv-64

MaxPool
Conv-128
Conv-128

MaxPool
Conv-256
Conv-256

MaxPool
Conv-512
Conv-512

MaxPool
Conv-512
Conv-512

FC-1000
FC-4096
FC-4096

1. Train on Imagenet

Image

MaxPool
Conv-64
Conv-64

MaxPool
Conv-128
Conv-128

MaxPool
Conv-256
Conv-256

MaxPool
Conv-512
Conv-512

MaxPool
Conv-512
Conv-512

FC-C
FC-4096
FC-4096

2. Small Dataset (C classes)

Freeze these

Reinitialize
this and train

Donahue et al, “DeCAF: A Deep Convolutional Activation
Feature for Generic Visual Recognition”, ICML 2014
Razavian et al, “CNN Features Off-the-Shelf: An
Astounding Baseline for Recognition”, CVPR Workshops
2014

Donahue et al, “DeCAF: A Deep Convolutional Activation Feature for
Generic Visual Recognition”, ICML 2014

Finetuned from AlexNet

Transfer Learning with CNNs

Image

MaxPool
Conv-64
Conv-64

MaxPool
Conv-128
Conv-128

MaxPool
Conv-256
Conv-256

MaxPool
Conv-512
Conv-512

MaxPool
Conv-512
Conv-512

FC-1000
FC-4096
FC-4096

1. Train on Imagenet

Image

MaxPool
Conv-64
Conv-64

MaxPool
Conv-128
Conv-128

MaxPool
Conv-256
Conv-256

MaxPool
Conv-512
Conv-512

MaxPool
Conv-512
Conv-512

FC-C
FC-4096
FC-4096

2. Small Dataset (C classes)

Freeze these

Reinitialize
this and train

Image

MaxPool
Conv-64
Conv-64

MaxPool
Conv-128
Conv-128

MaxPool
Conv-256
Conv-256

MaxPool
Conv-512
Conv-512

Conv-512
Conv-512
MaxPool

FC-C
FC-4096
FC-4096

Donahue et al, “DeCAF: A Deep Convolutional Activation
Feature for Generic Visual Recognition”, ICML 2014
Razavian et al, “CNN Features Off-the-Shelf: An
Astounding Baseline for Recognition”, CVPR Workshops
2014

3. Bigger dataset

Freeze these

Lower learning rate
when finetuning;
1/10 of original LR
is good starting
point

Train these

With bigger
dataset, train
more layers

Image

MaxPool
Conv-64
Conv-64

MaxPool
Conv-128
Conv-128

MaxPool
Conv-256
Conv-256

MaxPool
Conv-512
Conv-512

MaxPool
Conv-512
Conv-512

FC-1000
FC-4096
FC-4096

More specific

More generic

very similar
dataset

very different
dataset

very little data ? ?

quite a lot of
data

? ?

Image

MaxPool
Conv-64
Conv-64

MaxPool
Conv-128
Conv-128

MaxPool
Conv-256
Conv-256

MaxPool
Conv-512
Conv-512

MaxPool
Conv-512
Conv-512

FC-1000
FC-4096
FC-4096

More specific

More generic

very similar
dataset

very different
dataset

very little data Use Linear
Classifier on
top layer

?

quite a lot of
data

Finetune a
few layers

?

Image

MaxPool
Conv-64
Conv-64

MaxPool
Conv-128
Conv-128

MaxPool
Conv-256
Conv-256

MaxPool
Conv-512
Conv-512

MaxPool
Conv-512
Conv-512

FC-1000
FC-4096
FC-4096

More specific

More generic

very similar
dataset

very different
dataset

very little data Use Linear
Classifier on
top layer

You’re in
trouble… Try
linear classifier
from different
stages

quite a lot of
data

Finetune a
few layers

Finetune a
larger number
of layers

Summary
We looked in detail at:

Lecture 7 -

- Activation Functions (use ReLU)
- Data Preprocessing (images: subtract mean)
- Batch Normalization (use this!)
- Transfer learning (use this if you can!)

TLDRs

