
EECS 230 Deep Learning
Lecture 5: Training Neural Network

Some slides from Feifei Li



From last lectures:
Shallow & Deep Neural network, Losses, Optimization



Depicting shallow neural networks

<latexit sha1_base64="4mwMW+AxXHfhTyI/kaVAw9s5G24="></latexit>

y = �0 + �1h1 + �2h2 + �3h3

<latexit sha1_base64="OexYJKlfph/YpHs7sx68KlEAH9c="></latexit>

h1 = a[✓10 + ✓11x]

h2 = a[✓20 + ✓21x]

h3 = a[✓30 + ✓31x]

Each parameter multiplies its source and adds to its target



With enough hidden units

q… we can describe any 1D function to arbitrary accuracy



Example of Multi Layer Perceptron (MLP)
Bias 

vector

Weight 
matrix



Perceptron approximation:

Consider two probability distributions  
over two classes (e.g. bass or salmon) :                      and

(binary) 
Cross-entropy loss:

salmonbass

(binary case)

Cross-Entropy Loss (related to logistic regression loss)

Distance between two distributions can be evaluated via cross-entropy
(equivalent to KL divergence for fixed target)



Consider two probability distributions  
over K classes (e.g. bass, salmon, sturgeon) :            and

K-label perceptron’s output:                       for example

sum of Negative Log-Likelihoods  (NLL)

salmonbass sturgeon

Multi-valued label              gives one-hot distribution   

k-th
index

Total loss:
cross entropy

(general multi-class case)

Cross-Entropy Loss



From last lecture: Gradient Descent

qExample: for a function of two variables

update equation for a point x=(x1,x2) 

x1

x2

L(x1,x2) 

Stop at a local minima where 



From last lecture: Backpropogation

w
x

v
y

h=a+b c=uh

already 
computed

∂c
∂L

∂a ∂h ∂a ∂h
∂L = ∂L ∂h = ∂L

∂b ∂h ∂b ∂h
∂L = ∂L ∂h = ∂L

∂w ∂a ∂w ∂a
∂L = ∂L ∂a = ∂Lx

a=wx

∂v ∂b ∂v ∂b
b= vy

∂L = ∂L ∂b= ∂Ly

∂y ∂b ∂y ∂b
∂L = ∂L ∂b= ∂Lv

∂h ∂c ∂h ∂c
∂L = ∂L ∂c = ∂Lu

• Someof these partial derivatives are intermediate
• their values will not be used for gradient descent

direction of computation

∂x ∂a ∂x ∂a
∂L = ∂L ∂a= ∂Lw



Today

qDeep learning hardware
qDeep learning software
qTricks for training neural networks

qActivation function
qData Preprocessing
qBatch normalization
qTransfer learning



Deep Learning Hardware



Inside a computer



Spot the CPU!
(central processing unit)

This image is licensed under CC-BY 2.0

https://creativecommons.org/licenses/by/2.0/deed.en


Spot the GPUs!
(graphics processing unit)

This image is licensed under CC-BY 2.0

https://creativecommons.org/licenses/by/2.0/deed.en


CPU vs GPU
Cores Clock 

Speed
Memory Price Speed (throughput)

CPU
(Intel Core 
i9-7900k)

10 4.3
GHz

System 
RAM

$385 ~640 GFLOPS FP32

GPU 
(NVIDIA 
RTX 3090)

10496 1.6
GHz

24 GB 
GDDR6X

$1499 ~35.6 TFLOPS FP32

CPU: Fewer cores, 
but each core is 
much faster and 
much more 
capable; great at 
sequential tasks

GPU: More cores, 
but each core is 
much slower and 
“dumber”; great for 
parallel tasks



Example: Matrix Multiplication

A x B
B x C

A x C

=

cuBLAS::GEMM (GEneral Matrix-to-matrix Multiply)



CPU vs GPU in practice

Data from https://github.com/jcjohnson/cnn-benchmarks

(CPU performance not
well-optimized, a little unfair)

66x 67x 71x 64x 76x



CPU vs GPU in practice

Data from https://github.com/jcjohnson/cnn-benchmarks

cuDNN much faster than 
“unoptimized” CUDA

2.8x 3.0x 3.1x 3.4x 2.8x





CPU vs GPU
Cores Clock 

Speed
Memor 
y

Price Speed

CPU
(Intel Core 
i7-7700k)

10 4.3 GHz System 
RAM

$385 ~640 GFLOPs FP32

GPU 
(NVIDIA 
RTX 3090)

10496 1.6 GHz 24 GB
GDDR
6X

$1499 ~35.6 TFLOPs FP32

GPU
(Data Center)
NVIDIAA100

6912 CUDA,
432 Tensor

1.5 GHz 40/80
GB 
HBM2

$3/hr 
(GCP)

~9.7 TFLOPs FP64
~20 TFLOPs FP32
~312 TFLOPs FP16

TPU
Google Cloud 
TPUv3

2 Matrix Units 
(MXUs) per 
core, 4 cores

? 128 GB 
HBM

$8/hr 
(GCP)

~420 TFLOPs
(non-standard FP)

CPU: Fewer cores, 
but each core is 
much faster and 
much more 
capable; great at 
sequential tasks

GPU: More cores, 
but each core is 
much slower and 
“dumber”; great for 
parallel tasks

TPU: Specialized 
hardware for deep 
learning



Programming GPU

● CUDA (NVIDIA only)
○ Write C-like code that runs directly on the GPU
○ Optimized APIs: cuBLAS, cuFFT, cuDNN, etc

● OpenCL
○ Similar to CUDA, but runs on anything
○ Usually slower on NVIDIA hardware

● HIP https://github.com/ROCm-Developer-Tools/HIP
○ New project that automatically converts CUDA code to 

something that can run on AMD GPUs

https://github.com/ROCm-Developer-Tools/HIP


CPU / GPU Communication

Model 
is here

Data is here



CPU / GPU Communication

Model 
is here

Data is here

If you aren’t careful, training can 
bottleneck on reading data and 
transferring to GPU!

Solutions:
- Read all data into RAM
- Use SSD instead of HDD
- Use multiple CPU threads 

to prefetch data



Deep Learning Software



A zoo of frameworks!

Caffe
(UC Berkeley)

Torch
(NYU / Facebook)

Theano
(U Montreal)

TensorFlow
(Google)

Caffe2
(Facebook)
mostly features absorbed 
by PyTorch

PyTorch
(Facebook)

CNTK
(Microsoft)

PaddlePaddle
(Baidu)

MXNet
(Amazon)
Developed by U Washington, CMU, MIT,
Hong Kong U, etc but main framework of
choice at AWS

And others...

Chainer
(Preferred Networks)
The company has officially migrated its research
infrastructure to PyTorch

JAX
(Google)



A zoo of frameworks!

Caffe
(UC Berkeley)

Torch
(NYU / Facebook)

Theano
(U Montreal)

TensorFlow
(Google)

Caffe2
(Facebook)
mostly features absorbed 
by PyTorch

PyTorch
(Facebook)

CNTK
(Microsoft)

PaddlePaddle
(Baidu)

MXNet
(Amazon)
Developed by U Washington, CMU, MIT,
Hong Kong U, etc but main framework of
choice at AWS

And others...

Chainer
(Preferred Networks)
The company has officially migrated its research
infrastructure to PyTorch

JAX
(Google)

We’ll focus on this



Deep Learning Framework

(1) Quick to develop and test new ideas
(2) Automatically compute gradients
(3) Run it all efficiently on GPU (wrap cuDNN, cuBLAS, 

OpenCL, etc)



Computational Graphs
x y z

*

a
+

b

Σ

c

Numpy
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Computational Graphs
x y z

*

a
+

b

Σ

c

Numpy

Bad:
- Have to compute 

our own gradients
- Can’t run on GPU

Good:
Clean API, easy to 
write numeric code



Computational Graphs
x y z

*

a
+

b

Σ

c

Numpy PyTorch

Looks exactly like numpy!

Lecture 6 - 40



Computational Graphs
x y z

*

a
+

b

Σ

c

Numpy PyTorch

PyTorch handles gradients for us!



Computational Graphs
x y z

*

a
+

b

Σ

c

Numpy PyTorch

Trivial to run on GPU - just construct 
arrays on a different device!



PyTorch
(More details)



Pytorch fundamental concepts

qtorch.Tensor: Like a numpy array, but can run on GPU

qtorch.autograd: Package for building computational
graphs out of Tensors, and automatically computing
gradients

qtorch.nn.Module: A neural network layer; may store 
state or learnable weights



Pytorch:Tensor

Running example: Train 
a two-layer ReLU 
network on random data 
with L2 loss



Create random tensors 
for data and weights

Pytorch:Tensor



Forward pass: compute 
predictions and loss

Pytorch:Tensor



Backward pass: 
manually compute 
gradients

Pytorch:Tensor



Gradient descent 
step on weights

Pytorch:Tensor



To run on GPU, just use a 
different device!

Pytorch:Tensor



Creating Tensors with 
requires_grad=True enables 
autograd

Operations on Tensors with 
requires_grad=True cause PyTorch 
to build a computational graph

Pytorch:Autograd



Forward pass looks exactly 
the same as before, but we 
don’t need to track 
intermediate values -
PyTorch keeps track of them 
for us in the graph

Pytorch:Autograd



Compute gradient of loss 
with respect to w1 and w2

Pytorch:Autograd



Make gradient step on weights, then zero
them. Torch.no_grad means “don’t build a
computational graph for this part”

Pytorch:Autograd



PyTorch methods that end in underscore
modify the Tensor in-place; methods that
don’t return a new Tensor

Pytorch:Autograd



Define your own autograd 
functions by writing forward 
and backward functions for 
Tensors

Use ctx object to “cache” values for 
the backward pass, just like cache 
objects from A2

PyTorch: NewAutograd Functions



PyTorch: NewAutograd Functions
Define your own autograd 
functions by writing forward 
and backward functions for 
Tensors

Use ctx object to “cache” values for 
the backward pass, just like cache 
objects from A2

Define a helper function to make it 
easy to use the new function



PyTorch: NewAutograd Functions

Can use our new autograd 
function in the forward pass



PyTorch: NewAutograd Functions

In practice you almost never need
to define new autograd functions!
Only do it when you need custom
backward. In this case we can just
use a normal Python function



PyTorch: nn

Higher-level wrapper for 
working with neural nets

Use this! It will make your life 
easier



Define our model as a 
sequence of layers; each 
layer is an object that 
holds learnable weights

PyTorch: nn



Forward pass: feed data to 
model, and compute loss

PyTorch: nn



Forward pass: feed data to 
model, and compute loss

torch.nn.functional has useful 
helpers like loss functions

PyTorch: nn



Backward pass: compute 
gradient with respect to all 
model weights (they have 
requires_grad=True)

PyTorch: nn



Make gradient step on 
each model parameter 
(with gradients disabled)

PyTorch: nn



Use an optimizer for 
different update rules

PyTorch: nn



After computing gradients, use 
optimizer to update params 
and zero gradients

PyTorch: nn



PyTorch: nn
Define new Modules
A PyTorch Module is a neural net 
layer; it inputs and outputs Tensors

Modules can contain weights or other 
modules

You can define your own Modules 
using autograd!



PyTorch: nn
Define new Modules

Define our whole model 
as a single Module



PyTorch: nn
Define new Modules

Initializer sets up two 
children (Modules can 
contain modules)



PyTorch: nn
Define new Modules

Define forward pass using 
child modules

No need to define 
backward - autograd will 
handle it



PyTorch: nn
Define new Modules

Construct and train an 
instance of our model



PyTorch: nn
Define new Modules
Very common to mix and match
custom Module subclasses and
Sequential containers



PyTorch: nn
Define new Modules

Define network component 
as a Module subclass



PyTorch: nn
Define new Modules

Stack multiple instances of the 
component in a sequential



PyTorch: Pretrained Models

Super easy to use pretrained models with torchvision 
https://github.com/pytorch/vision

https://github.com/pytorch/vision


PyTorch: torch.utils.tensorboard

This image is licensed under CC-BY 4.0; no changes were made to the image

A python wrapper around 
Tensorflow’s web-based 
visualization tool.

https://github.com/facebookresearch/visdom
https://creativecommons.org/licenses/by/4.0/


PyTorch: Computational Graphs

Figure reproduced with permission from a Twitter post by Andrej Karpathy.

input image

loss

https://twitter.com/karpathy/status/597631909930242048?lang=en


Model Parallel vs. Data Parallel

Model Parallel minibatch

Data Parallel

Model parallelism: 
split computation 
graph into parts & 
distribute to GPUs/ 
nodes

Data parallelism: split 
minibatch into chunks & 
distribute to GPUs/ nodes



Tricks for training neural networks



Where we are now...
Learning network parameters through optimization

Landscape image is CC0 1.0 public domain
Walking man image is CC0 1.0 public domain

Lecture 7 -

http://maxpixel.freegreatpicture.com/Mountains-Valleys-Landscape-Hills-Grass-Green-699369
https://creativecommons.org/publicdomain/zero/1.0/
http://www.publicdomainpictures.net/view-image.php?image=139314&picture=walking-man
https://creativecommons.org/publicdomain/zero/1.0/


Where we are now...

Lecture 7 -

Mini-batch SGD
Loop:
1. Sample a batch of data
2. Forward prop it through the graph 

(network), get loss
3. Backprop to calculate the gradients
4. Update the parameters using the gradient



Activation Functions

Lecture 7 -



Activation Functions

Lecture 7 -



Activation Functions
Sigmoid

tanh

ReLU

Leaky ReLU

Maxout

ELU

Lecture 7 -



Activation Functions

Sigmoid

- Squashes numbers to range [0,1]
- Historically popular since they have nice interpretation as a 

saturating “firing rate” of a neuron

Lecture 7 -

1. Saturated neurons “kill” the 
gradients



sigmoid 
gate

x

Lecture 7 -



sigmoid gate

x

What happens when x = -10?

Lecture 7 -



sigmoid gate

x

What happens when x = -10?

Lecture 7 -



sigmoid gate

x

• What happens when x = -10? What happens when x = 0?

Lecture 7 -



sigmoid 
gate

x

What happens when x = -10? 
What happens when x = 0?
What happens when x = 10?

Lecture 7 -



sigmoid 
gate

x

What happens when x = -10? 
What happens when x = 0?
What happens when x = 10?

Lecture 7 -



Why is this a problem?
If all the gradients flowing back will be 
zero and weights will never change

sigmoid 
gate

x

Lecture 7 -



Sigmoid

Lecture 7 -

1. Saturated neurons “kill” the 
gradients

2. exp() is a bit expensive

Activation Functions
- Squashes numbers to range [0,1]
- Historically popular since they have nice interpretation as a 

saturating “firing rate” of a neuron



Activation Functions

tanh(x)

- Squashes numbers to range [-1,1]
- still kills gradients when saturated :(

[LeCun et al., 1991]

Lecture 7 -



Activation Functions
- Does not saturate (in +region)
- Very computationally efficient
- Converges much faster than 

sigmoid/tanh in practice (e.g. 6x)

ReLU
(Rectified Linear Unit)

[Krizhevsky et al., 2012]

Lecture 7 -



ReLU
gate

x

What happens when x = -10? 
What happens when x = 0?
What happens when x = 10?

Lecture 7 -



DATA CLOUD active
ReLU

Lecture 7 -

dead ReLU
will never activate
=> never update



DATA CLOUD active
ReLU

dead ReLU
will never activate
=> never update

=> people like to initialize 
ReLU neurons with slightly 
positive biases (e.g. 0.01)

Lecture 7 -



Activation Functions

Leaky ReLU

[Mass et al., 2013] 
[He et al., 2015]

- Does not saturate
- Computationally efficient
- Converges much faster than 

sigmoid/tanh in practice! (e.g. 6x)
- will not “die”.

Lecture 7 -



Activation Functions

Leaky ReLU

[Mass et al., 2013] 
[He et al., 2015]

- Does not saturate
- Computationally efficient
- Converges much faster than 

sigmoid/tanh in practice! (e.g. 6x)
- will not “die”.

Parametric Rectifier (PReLU)

backprop into \alpha 
(parameter)

Lecture 7 -



TLDR: In practice:

Lecture 7 -

- Use ReLU. Be careful with your learning rates
- Try out Leaky ReLU

- To squeeze out some marginal gains
- Don’t use sigmoid or tanh



Data Preprocessing

Lecture 7 -



Data Preprocessing

(Assume X [NxD] is data matrix, 
each example in a row)

Lecture 7 -



Remember: Consider what happens when
the input to a neuron is always positive...

What can we say about the gradients on w? 
Always all positive or all negative :(
(this is also why you want zero-mean data!)

hypothetical 
optimal w 
vector

zig zag path

allowed 
gradient 
update 
directions

allowed 
gradient 
update 
directions

Lecture 7 -



(Assume X [NxD] is data matrix, each example in a row)

Lecture 7 -

Data Preprocessing



Data Preprocessing

In practice, you may also see PCA and Whitening of the data

(data has diagonal 
covariance matrix)

Lecture 7 -

(covariance matrix is the 
identity matrix)



Fei-Fei Li & Ranjay Krishna & Danfei Xu Lecture 7 - April 20, 2021

Data Preprocessing

Before normalization: classification loss 
very sensitive to changes in weight matrix; 
hard to optimize

After normalization: less sensitive to small 
changes in weights; easier to optimize



TLDR: In practice for Images: center only

Lecture 7 -

Divide by per-channel std (e.g. ResNet) 
(mean along each channel = 3 numbers)

e.g. consider CIFAR-10 example with [32,32,3] images

- Subtract the mean image (e.g. AlexNet) 
(mean image = [32,32,3] array)

- Subtract per-channel mean (e.g. VGGNet) 
(mean along each channel = 3 numbers)

- Subtract per-channel mean and
Not common
to do PCA or 
whitening



Batch Normalization

Lecture 7 -



Batch Normalization
“you want zero-mean unit-variance activations? just make them so.”

consider a batch of activations at some layer. To make 
each dimension zero-mean unit-variance, apply:

[Ioffe and Szegedy, 2015]

this is a vanilla 
differentiable function...

Lecture 7 -



Input: Per-channel mean, 
shape is D

Per-channel var, 
shape is D

Normalized x, 
Shape is N x D

Batch Normalization [Ioffe and Szegedy, 2015]

XN

D

Lecture 7 -



Input: Per-channel mean, 
shape is D

Per-channel var, 
shape is D

Normalized x, 
Shape is N x D

Batch Normalization [Ioffe and Szegedy, 2015]

Learnable scale and 
shift parameters:

Output,
Shape is N x D

Learning = ,
= will recover the 

identity function!

Lecture 7 -



Per-channel mean, 
shape is D

Per-channel var, 
shape is D

Normalized x, 
Shape is N x D

Output,
Shape is N x D

Batch Normalization: Test-Time Estimates depend on minibatch; 
can’t do this at test-time!

Lecture 7 -

Input:

Learnable scale and 
shift parameters:

Learning = ,
= will recover the 

identity function!



Input: Per-channel mean, 
shape is D

Per-channel var, 
shape is D

Normalized x, 
Shape is N x D

Batch Normalization: Test-Time

Learnable scale and 
shift parameters:

Output,
Shape is N x D

(Running) average of 
values seen during training

(Running) average of 
values seen during training

Lecture 7 -

During testing batchnorm 
becomes a linear operator! 
Can be fused with the previous 
fully-connected or conv layer



Batch Normalization [Ioffe and Szegedy, 2015]

FC

BN

tanh

FC

BN

tanh

...

Usually inserted after Fully 
Connected or Convolutional layers, 
and before nonlinearity.

Lecture 7 -



Batch Normalization [Ioffe and Szegedy, 2015]

FC

BN

tanh

FC

BN

tanh

...

Lecture 7 -

- Makes deep networks much easier to train!
- Improves gradient flow
- Allows higher learning rates, faster convergence
- Networks become more robust to initialization
- Acts as regularization during training
- Zero overhead at test-time: can be fused with conv!
- Behaves differently during training and testing: this 

is a very common source of bugs!



Transfer learning



“You need a lot of a data if you want to 
train/use CNNs”



“You need a lot of a data if you want to 
train/use CNNs”

BU
ST
ED



Transfer Learning with CNNs



Transfer Learning with CNNs

AlexNet:
64 x 3 x 11 x 11

(More on this in Lecture 13)



Transfer Learning with CNNs

Test image

(More on this in Lecture 13)

L2 Nearest neighbors in feature space



Transfer Learning with CNNs

Image

MaxPool
Conv-64
Conv-64

MaxPool
Conv-128
Conv-128

MaxPool
Conv-256
Conv-256

MaxPool
Conv-512
Conv-512

MaxPool
Conv-512
Conv-512

FC-1000
FC-4096
FC-4096

1. Train on Imagenet

Donahue et al, “DeCAF: A Deep Convolutional Activation
Feature for Generic Visual Recognition”, ICML 2014
Razavian et al, “CNN Features Off-the-Shelf: An
Astounding Baseline for Recognition”, CVPR Workshops
2014



Transfer Learning with CNNs

Image

MaxPool
Conv-64
Conv-64

MaxPool
Conv-128
Conv-128

MaxPool
Conv-256
Conv-256

MaxPool
Conv-512
Conv-512

MaxPool
Conv-512
Conv-512

FC-1000
FC-4096
FC-4096

1. Train on Imagenet

Image

MaxPool
Conv-64
Conv-64

MaxPool
Conv-128
Conv-128

MaxPool
Conv-256
Conv-256

MaxPool
Conv-512
Conv-512

MaxPool
Conv-512
Conv-512

FC-C
FC-4096
FC-4096

2. Small Dataset (C classes)

Freeze these

Reinitialize 
this and train

Donahue et al, “DeCAF: A Deep Convolutional Activation
Feature for Generic Visual Recognition”, ICML 2014
Razavian et al, “CNN Features Off-the-Shelf: An
Astounding Baseline for Recognition”, CVPR Workshops
2014



Transfer Learning with CNNs

Image

MaxPool
Conv-64
Conv-64

MaxPool
Conv-128
Conv-128

MaxPool
Conv-256
Conv-256

MaxPool
Conv-512
Conv-512

MaxPool
Conv-512
Conv-512

FC-1000
FC-4096
FC-4096

1. Train on Imagenet

Image

MaxPool
Conv-64
Conv-64

MaxPool
Conv-128
Conv-128

MaxPool
Conv-256
Conv-256

MaxPool
Conv-512
Conv-512

MaxPool
Conv-512
Conv-512

FC-C
FC-4096
FC-4096

2. Small Dataset (C classes)

Freeze these

Reinitialize 
this and train

Donahue et al, “DeCAF: A Deep Convolutional Activation
Feature for Generic Visual Recognition”, ICML 2014
Razavian et al, “CNN Features Off-the-Shelf: An
Astounding Baseline for Recognition”, CVPR Workshops
2014

Donahue et al, “DeCAF: A Deep Convolutional Activation Feature for
Generic Visual Recognition”, ICML 2014

Finetuned from AlexNet



Transfer Learning with CNNs

Image

MaxPool
Conv-64
Conv-64

MaxPool
Conv-128
Conv-128

MaxPool
Conv-256
Conv-256

MaxPool
Conv-512
Conv-512

MaxPool
Conv-512
Conv-512

FC-1000
FC-4096
FC-4096

1. Train on Imagenet

Image

MaxPool
Conv-64
Conv-64

MaxPool
Conv-128
Conv-128

MaxPool
Conv-256
Conv-256

MaxPool
Conv-512
Conv-512

MaxPool
Conv-512
Conv-512

FC-C
FC-4096
FC-4096

2. Small Dataset (C classes)

Freeze these

Reinitialize 
this and train

Image

MaxPool
Conv-64
Conv-64

MaxPool
Conv-128
Conv-128

MaxPool
Conv-256
Conv-256

MaxPool
Conv-512
Conv-512

Conv-512
Conv-512
MaxPool

FC-C
FC-4096
FC-4096

Donahue et al, “DeCAF: A Deep Convolutional Activation
Feature for Generic Visual Recognition”, ICML 2014
Razavian et al, “CNN Features Off-the-Shelf: An
Astounding Baseline for Recognition”, CVPR Workshops
2014

3. Bigger dataset

Freeze these

Lower learning rate 
when finetuning; 
1/10 of original LR 
is good starting 
point

Train these

With bigger 
dataset, train 
more layers



Image

MaxPool
Conv-64
Conv-64

MaxPool
Conv-128
Conv-128

MaxPool
Conv-256
Conv-256

MaxPool
Conv-512
Conv-512

MaxPool
Conv-512
Conv-512

FC-1000
FC-4096
FC-4096

More specific

More generic

very similar 
dataset

very different 
dataset

very little data ? ?

quite a lot of 
data

? ?



Image

MaxPool
Conv-64
Conv-64

MaxPool
Conv-128
Conv-128

MaxPool
Conv-256
Conv-256

MaxPool
Conv-512
Conv-512

MaxPool
Conv-512
Conv-512

FC-1000
FC-4096
FC-4096

More specific

More generic

very similar 
dataset

very different 
dataset

very little data Use Linear 
Classifier on 
top layer

?

quite a lot of 
data

Finetune a 
few layers

?



Image

MaxPool
Conv-64
Conv-64

MaxPool
Conv-128
Conv-128

MaxPool
Conv-256
Conv-256

MaxPool
Conv-512
Conv-512

MaxPool
Conv-512
Conv-512

FC-1000
FC-4096
FC-4096

More specific

More generic

very similar 
dataset

very different 
dataset

very little data Use Linear 
Classifier on 
top layer

You’re in 
trouble… Try 
linear classifier 
from different 
stages

quite a lot of 
data

Finetune a 
few layers

Finetune a 
larger number 
of layers



Summary
We looked in detail at:

Lecture 7 -

- Activation Functions (use ReLU)
- Data Preprocessing (images: subtract mean)
- Batch Normalization (use this!)
- Transfer learning (use this if you can!)

TLDRs


