

EECS 230 Deep Learning Lecture 5: Training Neural Network

Some slides from Feifei Li

From last lectures: Shallow & Deep Neural network, Losses, Optimization

Depicting shallow neural networks

$$h_{1} = a[\theta_{10} + \theta_{11}x]$$

$$h_{2} = a[\theta_{20} + \theta_{21}x]$$

$$y = \phi_{0} + \phi_{1}h_{1} + \phi_{2}h_{2} + \phi_{3}h_{3}$$

$$h_{3} = a[\theta_{30} + \theta_{31}x]$$

With enough hidden units

Q... we can describe any 1D function to arbitrary accuracy

Example of Multi Layer Perceptron (MLP)

(binary case) Cross-Entropy Loss (related to *logistic regression* loss)

Perceptron approximation: $\mathbf{f}(\mathbf{w}, \mathbf{x}^i) = u(W^T X^i) \approx \sigma(W^T X^i)$

Consider two probability distributions over two classes (e.g. bass or salmon): $(\mathbf{y}, 1 - \mathbf{y})$ and $(\sigma, 1 - \sigma)$

(binary) Cross-entropy loss:

$$L(\mathbf{y},\sigma) = -\mathbf{y}\ln\sigma - (1-\mathbf{y})\ln(1-\sigma)$$

Distance between two distributions can be evaluated via **cross-entropy** (equivalent to *KL divergence* for fixed target)

$$H(\boldsymbol{p},\boldsymbol{q}) := -\sum_{k} p_k \, \ln q_k$$

(general multi-class case) Cross-Entropy Loss

K-label perceptron's output: $\bar{\sigma}(\mathbf{W}X^i)$ for example X^i *k*-th index Multi-valued label $\mathbf{y}^i = k$ gives one-hot distribution $\bar{\mathbf{y}}^i = (0, 0, 1, 0, \dots, 0)$ Consider two probability distributions over K classes (e.g. bass, salmon, sturgeon): $\bar{\mathbf{y}}^i$ and $(\bar{\sigma}_1, \bar{\sigma}_2, \bar{\sigma}_3, ..., \bar{\sigma}_K)$ $\Pr(\mathbf{x}^i \in \operatorname{Class} k \,|\, W) = \bar{\sigma}_k(WX^i)$ bass salmon sturgeon cross entropy **Total loss:** $L(W) = \sum \overline{\sum -\bar{\mathbf{y}}_k^i \ln \bar{\sigma}_k(WX^i)}$ $i \in \text{train}$ k $\Rightarrow \qquad L(W) = -\sum_{i \in \text{train}} \ln \bar{\sigma}_{\mathbf{y}^i}(WX^i)$ *i*∈train

sum of Negative Log-Likelihoods (NLL)

From last lecture: Gradient Descent

Example: for a function of two variables

From last lecture: Backpropogation

- Some of these partial derivatives are intermediate
 - their values will not be used for gradient descent

Today

- Deep learning hardware
- Deep learning software
- □Tricks for training neural networks
 - □Activation function
 - Data Preprocessing
 - Batch normalization
 - Transfer learning

Deep Learning Hardware

Inside a computer

Spot the CPU! (central processing unit)

This image is licensed under CC-BY 2.0

Spot the GPUs!

(graphics processing unit)

This image is licensed under CC-BY 2.0

CPU vs GPU

	Cores	Clock Speed	Memory	Price	Speed (throughput)
CPU (Intel Core i9-7900k)	10	4.3 GHz	System RAM	\$385	~640 GFLOPS FP32
GPU (NVIDIA RTX 3090)	10496	1.6 GHz	24 GB GDDR6X	\$1499	~35.6 T FLOPS FP32

CPU: Fewer cores, but each core is much faster and much more capable; great at sequential tasks

GPU: More cores, but each core is much slower and "dumber"; great for parallel tasks

Example: Matrix Multiplication

cuBLAS::GEMM (GEneral Matrix-to-matrix Multiply)

CPU vs GPU in practice

(CPU performance not well-optimized, a little unfair)

Data from https://github.com/jcjohnson/cnn-benchmarks

Intel E5-2620 v3 Pascal Titan X (no cuDNN) Pascal Titan X (cuDNN 5.1) 24000 N=16 Forward + Backward time (ms) 18000 2.8x 3.0x 3.1x 3.4x 2.8x 12000 6000 0 VGG-16 **VGG-19** ResNet-18 Res-Net-50 ResNet-200

CPU vs GPU in practice

cuDNN much faster than "unoptimized" CUDA

Data from https://github.com/jcjohnson/cnn-benchmarks

GigaFLOPs per Dollar

Time

CPU vs GPU

	Cores	Clock Speed	Memor y	Price	Speed
CPU (Intel Core i7-7700k)	10	4.3 GHz	System RAM	\$385	~640 GFLOPs FP32
GPU (NVIDIA RTX 3090)	10496	1.6 GHz	24 GB GDDR 6X	\$1499	~35.6 T FLOPs FP32
GPU (Data Center) NVIDIAA100	6912 CUDA, 432 Tensor	1.5 GHz	40/80 GB HBM2	\$3/hr (GCP)	~9.7 TFLOPs FP64 ~20 TFLOPs FP32 ~312 TFLOPs FP16
TPU Google Cloud TPUv3	2 Matrix Units (MXUs) per core, 4 cores	?	128 GB HBM	\$8/hr (GCP)	~420 TFLOPs (non-standard FP)

CPU: Fewer cores, but each core is much faster and much more capable; great at sequential tasks

GPU: More cores, but each core is much slower and "dumber"; great for parallel tasks

TPU: Specialized hardware for deep learning

Programming GPU

- CUDA (NVIDIA only)
 - Write C-like code that runs directly on the GPU
 - Optimized APIs: cuBLAS, cuFFT, cuDNN, etc
- OpenCL
 - Similar to CUDA, but runs on anything
 - Usually slower on NVIDIA hardware
- HIP <u>https://github.com/ROCm-Developer-Tools/HIP</u>
 - New project that automatically converts CUDA code to something that can run on AMD GPUs

CPU / GPU Communication

CPU / GPU Communication

Data is here

If you aren't careful, training can bottleneck on reading data and transferring to GPU!

Solutions:

- Read all data into RAM
- Use SSD instead of HDD
- Use multiple CPU threads to prefetch data

Deep Learning Software

A zoo of frameworks!

Caffe (UC Berkeley)

Torch (NYU / Facebook) Caffe2 (Facebook) mostly features absorbed by PyTorch PyTorch

(Facebook)

PaddlePaddle (Baidu)

MXNet (Amazon) Developed by U Washington, CMU

Developed by U Washington, CMU, MIT, Hong Kong U, etc but main framework of choice at AWS

Chainer (Preferred Networks) The company has officially migrated its research infrastructure to PyTorch

CNTK (Microsoft)

Theano (U Montreal) TensorFlow (Google) JAX (Google)

And others...

A zoo of frameworks!

Chainer (Preferred Networks) The company has officially migrated its research infrastructure to PyTorch

CNTK (Microsoft)

(Google)

PaddlePaddle

And others...

Deep Learning Framework

- (1) Quick to develop and test new ideas
- (2) Automatically compute gradients
- (3) Run it all efficiently on GPU (wrap cuDNN, cuBLAS, OpenCL, etc)

Numpy

import numpy as np
np.random.seed(0)

N, D = 3, 4

x = np.random.randn(N, D) y = np.random.randn(N, D) z = np.random.randn(N, D)

a = x * y b = a + zc = np.sum(b)

Numpy

```
import numpy as np
np.random.seed(0)
N, D = 3, 4
x = np.random.randn(N, D)
y = np.random.randn(N, D)
z = np.random.randn(N, D)
a = x * y
b = a + z
c = np.sum(b)
grad_c = 1.0
grad_b = grad_c * np.ones((N, D))
grad_a = grad_b.copy()
grad_z = grad_a * y
grad y = grad a * x
```


Numpy

```
import numpy as np
np.random.seed(0)
N, D = 3, 4
x = np.random.randn(N, D)
y = np.random.randn(N, D)
z = np.random.randn(N, D)
a = x * y
b = a + z
c = np.sum(b)
grad c = 1.0
```

```
grad_b = grad_c * np.ones((N, D))
grad_a = grad_b.copy()
grad_z = grad_b.copy()
grad_x = grad_a * y
grad_y = grad_a * x
```


Good: Clean API, easy to write numeric code

Bad:

- Have to compute our own gradients
- Can't run on GPU

D))

Numpy

import numpy as np
np.random.seed(0)
N, D = 3, 4
x = np.random.randn(N, D)
<pre>y = np.random.randn(N, D)</pre>
<pre>z = np.random.randn(N, D)</pre>
a = x * y
b = a + z
c = np.sum(b)
grad_c = 1.0
grad_b = grad_c * np.ones((N,
grad_a = grad_b.copy()
grad_z = grad_b.copy()
grad_x = grad_a * y
qrad y = qrad a * x

import torch

N,	, I) =	3,	4	
x	=	to	cch.	randn(N,	D)
Y	=	to	cch.	.randn(N,	D)
z	=	toi	cch.	.randn(N,	D)
			1 C		

```
a = x * y

b = a + z

c = torch.sum(b)
```

Looks exactly like numpy!

Numpy

import numpy as np
np.random.seed(0)
N, D = 3, 4
x = np.random.randn(N, D)
y = np.random.randn(N, D)
z = np.random.randn(N, D)
a = x * y

```
b = a + z

c = np.sum(b)
```

```
grad_c = 1.0
grad_b = grad_c * np.ones((N, D))
grad_a = grad_b.copy()
grad_z = grad_b.copy()
grad_x = grad_a * y
grad y = grad a * x
```


PyTorch

import torch

N, D = 3, 4
x = torch.randn(N, D,
y = torch.randn(N, D)
z = torch.randn(N, D)

```
a = x * y

b = a + z

c = torch.sum(b)
```

c.backward()
print(x.grad)

PyTorch handles gradients for us!

Numpy

import numpy as np
np.random.seed(0)
N, D = 3, 4
x = np.random.randn(N, D)
y = np.random.randn(N, D)
z = np.random.randn(N, D)
a = x * y
b = a + z
c = np.sum(b)

```
grad_c = 1.0
grad_b = grad_c * np.ones((N, D))
grad_a = grad_b.copy()
grad_z = grad_b.copy()
grad_x = grad_a * y
grad_y = grad_a * x
```


PyTorch

import torch

```
a = x * y

b = a + z

c = torch.sum(b)
```

```
c.backward()
print(x.grad)
```

Trivial to run on GPU - just construct arrays on a different device!

PyTorch (More details) Pytorch fundamental concepts

Itorch.Tensor: Like a numpy array, but can run on GPU

Itorch.autograd: Package for building computational graphs out of Tensors, and automatically computing gradients

Itorch.nn.Module: A neural network layer; may store state or learnable weights

Pytorch:Tensor

Running example: Train a two-layer ReLU network on random data with L2 loss

```
import torch
device = torch.device('cpu')
N, D in, H, D out = 64, 1000, 100, 10
x = torch.randn(N, D in, device=device)
y = torch.randn(N, D out, device=device)
w1 = torch.randn(D in, H, device=device)
w2 = torch.randn(H, D out, device=device)
learning rate = 1e-6
for t in range(500):
    h = x.mm(w1)
    h relu = h.clamp(min=0)
    y \text{ pred} = h \text{ relu.mm}(w2)
    loss = (y pred - y).pow(2).sum()
    grad y pred = 2.0 * (y pred - y)
    grad w2 = h relu.t().mm(grad y pred)
    grad h relu = grad y pred.mm(w2.t())
    grad h = grad h relu.clone()
    grad h[h < 0] = 0
    grad w1 = x.t().mm(grad h)
    w1 -= learning rate * grad w1
    w2 -= learning rate * grad w2
```


```
import torch
                                                   device = torch.device('cpu')
                                                   N, D in, H, D out = 64, 1000, 100, 10
                                                   x = torch.randn(N, D in, device=device)
Create random tensors
                                                   y = torch.randn(N, D out, device=device)
                                                   w1 = torch.randn(D in, H, device=device)
for data and weights
                                                   w2 = torch.randn(H, D out, device=device)
                                                   learning rate = 1e-6
                                                   for t in range(500):
                                                       h = x.mm(w1)
                                                       h relu = h.clamp(min=0)
                                                       y pred = h relu.mm(w2)
                                                       loss = (y pred - y).pow(2).sum()
                                                       grad y pred = 2.0 * (y \text{ pred} - y)
                                                       grad w2 = h relu.t().mm(grad y pred)
                                                       grad h relu = grad y pred.mm(w2.t())
                                                       grad h = grad h relu.clone()
                                                       grad h[h < 0] = 0
                                                       grad w1 = x.t().mm(grad h)
                                                       w1 -= learning rate * grad w1
                                                       w2 -= learning rate * grad w2
```


Backward pass: manually compute gradients

```
import torch
device = torch.device('cpu')
N, D in, H, D out = 64, 1000, 100, 10
x = torch.randn(N, D in, device=device)
y = torch.randn(N, D out, device=device)
w1 = torch.randn(D in, H, device=device)
w2 = torch.randn(H, D out, device=device)
learning rate = 1e-6
for t in range(500):
    h = x.mm(w1)
    h relu = h.clamp(min=0)
    y pred = h relu.mm(w2)
    loss = (y pred - y).pow(2).sum()
    grad y pred = 2.0 * (y pred - y)
    grad w2 = h relu.t().mm(grad y pred)
    grad h relu = grad y pred.mm(w2.t())
    grad h = grad h relu.clone()
    grad h[h < 0] = 0
    grad w1 = x.t().mm(grad h)
    w1 -= learning rate * grad w1
```

w2 -= learning_rate * grad_w2

```
import torch
device = torch.device('cpu')
N, D in, H, D out = 64, 1000, 100, 10
x = torch.randn(N, D in, device=device)
y = torch.randn(N, D out, device=device)
w1 = torch.randn(D in, H, device=device)
w2 = torch.randn(H, D out, device=device)
learning rate = 1e-6
for t in range(500):
    h = x.mm(w1)
    h relu = h.clamp(min=0)
    y pred = h relu.mm(w2)
    loss = (y pred - y).pow(2).sum()
    grad y pred = 2.0 * (y \text{ pred} - y)
    grad w2 = h relu.t().mm(grad y pred)
    grad h relu = grad y pred.mm(w2.t())
    grad h = grad h relu.clone()
    grad h[h < 0] = 0
    grad w1 = x.t().mm(grad h)
    w1 -= learning rate * grad w1
    w2 -= learning rate * grad w2
```

Gradient descent step on weights

To run on GPU, just use a different device!

```
device = torch.device('cuda:0')
N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in, device=device)
y = torch.randn(N, D_out, device=device)
w1 = torch.randn(D_in, H, device=device)
w2 = torch.randn(H, D out, device=device)
```

```
learning_rate = 1e-6
for t in range(500):
    h = x.mm(w1)
    h_relu = h.clamp(min=0)
    y_pred = h_relu.mm(w2)
    loss = (y_pred - y).pow(2).sum()
    grad_y_pred = 2.0 * (y_pred - y)
    grad_w2 = h_relu.t().mm(grad_y_pred)
    grad_h_relu = grad_y_pred.mm(w2.t())
    grad_h = grad_h_relu.clone()
    grad_w1 = x.t().mm(grad_h)
    w1 -= learning_rate * grad_w1
    w2 -= learning_rate * grad_w2
```

Creating Tensors with requires_grad=True enables autograd

Operations on Tensors with requires_grad=True cause PyTorch to build a computational graph

```
N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)
w1 = torch.randn(D_in, H, requires_grad=True)
w2 = torch.randn(H, D_out, requires_grad=True)
learning_rate = 1e-6
for t in range(500):
    y_pred = x.mm(w1).clamp(min=0).mm(w2)
    loss = (y_pred - y).pow(2).sum()
    loss.backward()
    with torch.no_grad():
        w1 -= learning_rate * w1.grad
        w2 -= learning_rate * w2.grad
```

```
w1.grad.zero_()
w2.grad.zero_()
```



```
N, D in, H, D out = 64, 1000, 100, 10
                                         x = torch.randn(N, D in)
                                         y = torch.randn(N, D out)
                                         w1 = torch.randn(D in, H, requires grad=True)
                                         w2 = torch.randn(H, D out, requires grad=True)
                                         learning rate = 1e-6
                                         for t in range(500):
                                             y pred = x.mm(w1).clamp(min=0).mm(w2)
                                             loss = (y pred - y).pow(2).sum()
                                             loss.backward()
                                             with torch.no grad():
                                                 w1 -= learning rate * w1.grad
Make gradient step on weights, then zero
                                                 w2 -= learning rate * w2.grad
them. Torch.no grad means "don't build a
                                                 wl.grad.zero ()
computational graph for this part"
                                                 w2.grad.zero ()
```

import torch

```
N, D in, H, D out = 64, 1000, 100, 10
x = torch.randn(N, D in)
y = torch.randn(N, D out)
w1 = torch.randn(D in, H, requires grad=True)
w2 = torch.randn(H, D out, requires grad=True)
learning rate = 1e-6
for t in range(500):
    y pred = x.mm(w1).clamp(min=0).mm(w2)
    loss = (y pred - y).pow(2).sum()
    loss.backward()
    with torch.no grad():
        w1 -= learning rate * w1.grad
        w2 -= learning rate * w2.grad
        wl.grad.zero ()
        w2.grad.zero ()
```

PyTorch methods that end in underscore modify the Tensor in-place; methods that don't return a new Tensor

Define your own autograd functions by writing forward and backward functions for Tensors

Use ctx object to "cache" values for the backward pass, just like cache objects from A2

```
class MyReLU(torch.autograd.Function):
    @staticmethod
    def forward(ctx, x):
        ctx.save_for_backward(x)
        return x.clamp(min=0)
```

```
@staticmethod
def backward(ctx, grad_y):
    x, = ctx.saved_tensors
    grad_input = grad_y.clone()
    grad_input[x < 0] = 0
    return grad_input</pre>
```

Define your own autograd functions by writing forward and backward functions for Tensors

Use ctx object to "cache" values for the backward pass, just like cache objects from A2

Define a helper function to make it easy to use the new function

```
class MyReLU(torch.autograd.Function):
    @staticmethod
    def forward(ctx, x):
        ctx.save_for_backward(x)
        return x.clamp(min=0)
```

```
@staticmethod
def backward(ctx, grad_y):
    x, = ctx.saved_tensors
    grad_input = grad_y.clone()
    grad_input[x < 0] = 0
    return grad_input
```

```
def my_relu(x):
    return MyReLU.apply(x)
```

```
class MyReLU(torch.autograd.Function):
    @staticmethod
    def forward(ctx, x):
        ctx.save for backward(x)
```

```
return x.clamp(min=0)
```

```
@staticmethod
```

```
def backward(ctx, grad_y):
    x, = ctx.saved_tensors
    grad_input = grad_y.clone()
    grad_input[x < 0] = 0
    return grad_input</pre>
```

def my_relu(x):
 return MyReLU.apply(x)

Can use our new autograd function in the forward pass

```
N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)
w1 = torch.randn(D_in, H, requires_grad=True)
w2 = torch.randn(H, D out, requires grad=True)
```

```
learning_rate = 1e-6
for t in range(500):
    y_pred = my_relu(x.mm(w1)).mm(w2)
    loss = (y_pred - y).pow(2).sum()
```

loss.backward()

```
with torch.no_grad():
    w1 -= learning_rate * w1.grad
    w2 -= learning_rate * w2.grad
    w1.grad.zero_()
    w2.grad.zero_()
```

def my_relu(x):
 return x.clamp(min=0)

In practice you almost never need to define new autograd functions! Only do it when you need custom backward. In this case we can just use a normal Python function

```
N, D_in, H, D_out = 64, 1000, 100, 10
```

```
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)
w1 = torch.randn(D_in, H, requires_grad=True)
w2 = torch.randn(H, D_out, requires_grad=True)
```

```
learning_rate = 1e-6
for t in range(500):
    y_pred = my_relu(x.mm(w1)).mm(w2)
    loss = (y_pred - y).pow(2).sum()
```

loss.backward()

```
with torch.no_grad():
    w1 -= learning_rate * w1.grad
    w2 -= learning_rate * w2.grad
    w1.grad.zero_()
    w2.grad.zero_()
```

Higher-level wrapper for working with neural nets

Use this! It will make your life easier

```
N, D in, H, D out = 64, 1000, 100, 10
x = torch.randn(N, D in)
y = torch.randn(N, D out)
model = torch.nn.Sequential(
          torch.nn.Linear(D in, H),
          torch.nn.ReLU(),
          torch.nn.Linear(H, D out))
learning rate = 1e-2
for t in range(500):
    y \text{ pred} = \text{model}(x)
    loss = torch.nn.functional.mse loss(y pred, y)
    loss.backward()
    with torch.no grad():
        for param in model.parameters():
            param -= learning rate * param.grad
    model.zero grad()
```

Define our model as a sequence of layers; each layer is an object that holds learnable weights

```
N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)
```

```
model = torch.nn.Sequential(
        torch.nn.Linear(D_in, H),
        torch.nn.ReLU(),
        torch.nn.Linear(H, D_out))
```

```
learning_rate = 1e-2
for t in range(500):
    y_pred = model(x)
    loss = torch.nn.functional.mse_loss(y_pred, y)
    loss.backward()
    with torch.no_grad():
        for param in model.parameters():
            param -= learning_rate * param.grad
    model.zero grad()
```


Backward pass: compute gradient with respect to all model weights (they have requires_grad=True)

```
N, D in, H, D out = 64, 1000, 100, 10
x = torch.randn(N, D in)
y = torch.randn(N, D out)
model = torch.nn.Sequential(
          torch.nn.Linear(D in, H),
          torch.nn.ReLU(),
          torch.nn.Linear(H, D out))
learning rate = 1e-2
for t in range(500):
    y \text{ pred} = \text{model}(x)
    loss = torch.nn.functional.mse loss(y pred, y)
    loss.backward()
    with torch.no grad():
        for param in model.parameters():
            param -= learning rate * param.grad
    model.zero grad()
```

```
import torch
                                      N, D in, H, D out = 64, 1000, 100, 10
                                      x = torch.randn(N, D in)
                                      y = torch.randn(N, D out)
                                      model = torch.nn.Sequential(
                                                 torch.nn.Linear(D in, H),
                                                 torch.nn.ReLU(),
                                                 torch.nn.Linear(H, D out))
                                      learning rate = 1e-2
                                      for t in range(500):
                                          y \text{ pred} = \text{model}(x)
                                          loss = torch.nn.functional.mse loss(y pred, y)
                                          loss.backward()
                                          with torch.no grad():
Make gradient step on
                                               for param in model.parameters():
each model parameter
                                                   param -= learning rate * param.grad
(with gradients disabled)
                                          model.zero grad()
```


After computing gradients, use optimizer to update params and zero gradients

```
import torch
```

```
N, D in, H, D out = 64, 1000, 100, 10
x = torch.randn(N, D in)
y = torch.randn(N, D out)
model = torch.nn.Sequential(
          torch.nn.Linear(D in, H),
          torch.nn.ReLU(),
          torch.nn.Linear(H, D out))
learning rate = 1e-4
optimizer = torch.optim.Adam(model.parameters(),
                               lr=learning rate)
for t in range(500):
    y \text{ pred} = \text{model}(x)
    loss = torch.nn.functional.mse loss(y pred, y)
    loss.backward()
```

```
optimizer.step()
optimizer.zero_grad()
```

A PyTorch **Module** is a neural net layer; it inputs and outputs Tensors

Modules can contain weights or other modules

You can define your own Modules using autograd!

```
class TwoLayerNet(torch.nn.Module):
    def __init__(self, D_in, H, D_out):
        super(TwoLayerNet, self).__init__()
        self.linear1 = torch.nn.Linear(D_in, H)
        self.linear2 = torch.nn.Linear(H, D_out)
```

```
def forward(self, x):
    h_relu = self.linear1(x).clamp(min=0)
    y_pred = self.linear2(h_relu)
    return y_pred
```

```
N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)
```

```
model = TwoLayerNet(D_in, H, D_out)
```

```
optimizer = torch.optim.SGD(model.parameters(), lr=1e-4)
for t in range(500):
    y_pred = model(x)
    loss = torch.nn.functional.mse_loss(y_pred, y)
```

```
loss.backward()
optimizer.step()
optimizer.zero_grad()
```

Define our whole model as a single Module

import torch

```
class TwoLayerNet(torch.nn.Module):
    def __init__(self, D_in, H, D_out):
        super(TwoLayerNet, self).__init__()
        self.linear1 = torch.nn.Linear(D_in, H)
        self.linear2 = torch.nn.Linear(H, D_out)
```

def forward(self, x): h_relu = self.linear1(x).clamp(min=0)

```
y_pred = self.linear2(h_relu)
return y pred
```

```
N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)
model = TwoLayerNet(D_in, H, D_out)
optimizer = torch.optim.SGD(model.parameters(), lr=1e-4)
for t in range(500):
    y pred = model(x)
```

```
loss = torch.nn.functional.mse loss(y pred, y)
```

```
loss.backward()
optimizer.step()
optimizer.zero_grad()
```

Initializer sets up two children (Modules can contain modules)

```
class TwoLayerNet(torch.nn.Module):
    def __init__(self, D_in, H, D_out):
        super(TwoLayerNet, self).__init__()
        self.linear1 = torch.nn.Linear(D_in, H)
        self.linear2 = torch.nn.Linear(H, D_out)
```

```
def forward(self, x):
    h_relu = self.linear1(x).clamp(min=0)
    y_pred = self.linear2(h_relu)
    return y_pred
```

```
N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D out)
```

```
model = TwoLayerNet(D_in, H, D_out)
```

```
optimizer = torch.optim.SGD(model.parameters(), lr=1e-4)
for t in range(500):
    y_pred = model(x)
    loss = torch.nn.functional.mse_loss(y_pred, y)
```

```
loss.backward()
optimizer.step()
optimizer.zero_grad()
```

Define forward pass using child modules

No need to define backward - autograd will handle it

```
class TwoLayerNet(torch.nn.Module):
    def __init__(self, D_in, H, D_out):
        super(TwoLayerNet, self).__init__()
        self.linear1 = torch.nn.Linear(D_in, H)
        self.linear2 = torch.nn.Linear(H, D_out)
```

```
def forward(self, x):
    h_relu = self.linear1(x).clamp(min=0)
    y_pred = self.linear2(h_relu)
    return y_pred
```

```
N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)
model = TwoLayerNet(D_in, H, D_out)
```

```
optimizer = torch.optim.SGD(model.parameters(), lr=1e-4)
for t in range(500):
    y_pred = model(x)
    loss = torch.nn.functional.mse_loss(y_pred, y)
```

```
loss.backward()
optimizer.step()
optimizer.zero_grad()
```

Construct and train an instance of our model

```
class TwoLayerNet(torch.nn.Module):
    def init (self, D in, H, D out):
        super(TwoLayerNet, self). init ()
        self.linear1 = torch.nn.Linear(D in, H)
        self.linear2 = torch.nn.Linear(H, D out)
    def forward(self, x):
        h relu = self.linear1(x).clamp(min=0)
        y pred = self.linear2(h relu)
        return y pred
N, D in, H, D out = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D out)
model = TwoLayerNet(D in, H, D out)
optimizer = torch.optim.SGD(model.parameters(), lr=1e-4)
for t in range(500):
    y \text{ pred} = \text{model}(x)
    loss = torch.nn.functional.mse loss(y pred, y)
    loss.backward()
    optimizer.step()
    optimizer.zero grad()
```

Very common to mix and match custom Module subclasses and Sequential containers

```
class ParallelBlock(torch.nn.Module):
    def init (self, D in, D out):
        super(ParallelBlock, self). init ()
        self.linear1 = torch.nn.Linear(D in, D out)
        self.linear2 = torch.nn.Linear(D in, D out)
    def forward(self, x):
        h1 = self.linear1(x)
        h2 = self.linear2(x)
        return (h1 * h2).clamp(min=0)
N, D in, H, D out = 64, 1000, 100, 10
x = torch.randn(N, D in)
y = torch.randn(N, D out)
model = torch.nn.Sequential(
            ParallelBlock(D in, H),
            ParallelBlock(H, H),
            torch.nn.Linear(H, D out))
optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
for t in range(500):
    y \text{ pred} = \text{model}(x)
    loss = torch.nn.functional.mse loss(y pred, y)
    loss.backward()
    optimizer.step()
```

```
optimizer.zero grad()
```

Define network component as a Module subclass

```
class ParallelBlock(torch.nn.Module):
    def __init__(self, D_in, D_out):
        super(ParallelBlock, self).__init__()
        self.linear1 = torch.nn.Linear(D_in, D_out)
        self.linear2 = torch.nn.Linear(D_in, D_out)
    def forward(self, x):
        h1 = self.linear1(x)
        h2 = self.linear2(x)
        return (h1 * h2).clamp(min=0)
```

```
N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D out)
```

```
model = torch.nn.Sequential(
        ParallelBlock(D_in, H),
        ParallelBlock(H, H),
        torch.nn.Linear(H, D_out))
```

```
optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
for t in range(500):
    y_pred = model(x)
    loss = torch.nn.functional.mse_loss(y_pred, y)
    loss.backward()
    optimizer.step()
    optimizer.zero grad()
```

Stack multiple instances of the component in a sequential

```
class ParallelBlock(torch.nn.Module):
    def init (self, D in, D out):
        super(ParallelBlock, self). init ()
        self.linear1 = torch.nn.Linear(D in, D out)
        self.linear2 = torch.nn.Linear(D in, D out)
   def forward(self, x):
        h1 = self.linear1(x)
        h2 = self.linear2(x)
        return (h1 * h2).clamp(min=0)
N, D in, H, D out = 64, 1000, 100, 10
x = torch.randn(N, D in)
y = torch.randn(N, D out)
model = torch.nn.Sequential(
            ParallelBlock(D in, H),
            ParallelBlock(H, H),
            torch.nn.Linear(H, D out))
optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
for t in range(500):
```

```
y_pred = model(x)
loss = torch.nn.functional.mse_loss(y_pred, y)
loss.backward()
optimizer.step()
```

```
optimizer.zero grad()
```

PyTorch: Pretrained Models

Super easy to use pretrained models with torchvision https://github.com/pytorch/vision

import torch
import torchvision

alexnet = torchvision.models.alexnet(pretrained=True)
vgg16 = torchvision.models.vgg16(pretrained=True)
resnet101 = torchvision.models.resnet101(pretrained=True)

PyTorch: torch.utils.tensorboard

A python wrapper around Tensorflow's web-based visualization tool.

This image is licensed under <u>CC-BY 4.0</u>; no changes were made to the image

PyTorch: Computational Graphs

Figure reproduced with permission from a Twitter post by Andrej Karpathy.

Model Parallel vs. Data Parallel

Model parallelism: split computation graph into parts & distribute to GPUs/ nodes

Data parallelism: split minibatch into chunks & distribute to GPUs/ nodes

Model Parallel

Data Parallel

Tricks for training neural networks

Where we are now...

Learning network parameters through optimization

Vanilla Gradient Descent

while True:

Landscape image is <u>CC0 1.0</u> public domain Walking man image is <u>CC0 1.0</u> public domain weights_grad = evaluate_gradient(loss_fun, data, weights)
weights += - step_size * weights_grad # perform parameter update
Where we are now...

Mini-batch SGD

Loop:

- 1. Sample a batch of data
- 2. Forward prop it through the graph (network), get loss
- 3. Backprop to calculate the gradients
- 4. Update the parameters using the gradient

Leaky ReLU $\max(0.1x, x)$

 $\begin{array}{l} \textbf{Maxout} \\ \max(w_1^T x + b_1, w_2^T x + b_2) \end{array}$

$$\sigma(x) = 1/(1+e^{-x})$$

- Squashes numbers to range [0,1]
- Historically popular since they have nice interpretation as a saturating "firing rate" of a neuron

1. Saturated neurons "kill" the gradients

$$\frac{\partial \sigma(x)}{\partial x} = \sigma(x) \left(1 - \sigma(x)\right)$$

What happens when x = -10?

 $\frac{\partial \sigma(x)}{\partial x} = \sigma(x) \left(1 - \sigma(x)\right)$

What happens when x = -10?

 $\frac{\partial \sigma(x)}{\partial x} = \sigma(x) \left(1 - \sigma(x)\right)$

$$\sigma(x) = -0$$

$$\frac{\partial \sigma(x)}{\partial x} = \sigma(x) (1 - \sigma(x)) = 0(1 - 0) = 0$$

 $\frac{\partial \sigma(x)}{\partial x} = \sigma(x) (1 - \sigma(x))$ • What happens when x = -10? What happens when x = 0?

What happens when x = -10? What happens when x = 0? What happens when x = 10?

$$\frac{\partial \sigma(x)}{\partial x} = \sigma(x) \left(1 - \sigma(x)\right)$$

$$\sigma(x) = \sim 1 \qquad \frac{\partial \sigma(x)}{\partial x} = \sigma(x) \left(1 - \sigma(x)\right) = 1(1 - 1) = 0$$

Why is this a problem? If all the gradients flowing back will be zero and weights will never change

$$\frac{\partial \sigma(x)}{\partial x} = \sigma(x) \left(1 - \sigma(x)\right)$$

$$\sigma(x) = 1/(1+e^{-x})$$

- Squashes numbers to range [0,1]
- Historically popular since they have nice interpretation as a saturating "firing rate" of a neuron

 Saturated neurons "kill" the gradients
 exp() is a bit expensive

- Squashes numbers to range [-1,1]
- still kills gradients when saturated :(

[LeCun et al., 1991]

- Does not saturate (in +region)
- Very computationally efficient
- Converges much faster than sigmoid/tanh in practice (e.g. 6x)

ReLU (Rectified Linear Unit)

[Krizhevsky et al., 2012]

What happens when x = -10? What happens when x = 0? What happens when x = 10?

10

[Mass et al., 2013] [He et al., 2015]

- Does not saturate
- Computationally efficient
- Converges much faster than sigmoid/tanh in practice! (e.g. 6x)
- will not "die".

Leaky ReLU $f(x) = \max(0.01x, x)$

10

10

[Mass et al., 2013] [He et al., 2015]

- Does not saturate
- Computationally efficient
- Converges much faster than sigmoid/tanh in practice! (e.g. 6x)
- will not "die".

Parametric Rectifier (PReLU)

$$f(x) = \max(lpha x, x)$$

backprop into \alpha (parameter)

 $\int_{-10}^{-10} \int_{-1}^{10} \int_{10}^{10}$ Leaky ReLU $f(x) = \max(0.01x, x)$

TLDR: In practice:

- Use ReLU. Be careful with your learning rates
- Try out Leaky ReLU
 - To squeeze out some marginal gains
- Don't use sigmoid or tanh

(Assume X [NxD] is data matrix, each example in a row)

Remember: Consider what happens when the input to a neuron is always positive...

$$f\left(\sum_{i} w_{i}x_{i} + b\right)$$

What can we say about the gradients on **w**? Always all positive or all negative :((this is also why you want zero-mean data!)

(Assume X [NxD] is data matrix, each example in a row)

In practice, you may also see PCA and Whitening of the data

Before normalization: classification loss changes in weights; easier to optimize very sensitive to changes in weight matrix; hard to optimize

After normalization: less sensitive to small

TLDR: In practice for Images: center only

e.g. consider CIFAR-10 example with [32,32,3] images

- Subtract the mean image (e.g. AlexNet) (mean image = [32,32,3] array)
- Subtract per-channel mean (e.g. VGGNet) (mean along each channel = 3 numbers)
- Subtract per-channel mean and
 Divide by per-channel std (e.g. ResNet)
 (mean along each channel = 3 numbers)

Not common to do PCA or whitening

"you want zero-mean unit-variance activations? just make them so."

consider a batch of activations at some layer. To make each dimension zero-mean unit-variance, apply:

$$\widehat{x}^{(k)} = \frac{x^{(k)} - \mathbb{E}[x^{(k)}]}{\sqrt{\operatorname{Var}[x^{(k)}]}}$$

this is a vanilla differentiable function...

[loffe and Szegedy, 2015]

Input: $x: N \times D$

D

[loffe and Szegedy, 2015]

Input: $x: N \times D$

Learnable scale and shift parameters:

 $\gamma, \beta: D$

Learning $\gamma = \sigma$, $\beta = \mu$ will recover the identity function!

Batch Normalization: Test-Time

Estimates depend on minibatch; can't do this at test-time!

Input: $x: N \times D$

Learnable scale and shift parameters:

 $\gamma, \beta: D$

Learning $\gamma = \sigma$, $\beta = \mu$ will recover the identity function!

 $\mu_j = \frac{1}{N} \sum_{i=1}^{N} x_{i,j} \quad \begin{array}{l} \text{Per-channel mean,} \\ \text{shape is } \mathbf{D} \end{array}$ shape is D $\sigma_j^2 = \frac{1}{N} \sum_{i=1}^{N} (x_{i,j} - \mu_j)^2 \quad \begin{array}{c} \text{Per-channel var,} \\ \text{shape is D} \end{array}$ $\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$ Normalized x, Shape is N x D $y_{i,j} = \gamma_j \hat{x}_{i,j} + \beta_j$ Output, Shape is N x D

Batch Normalization: Test-Time

Input: $x: N \times D$

Learnable scale and shift parameters:

 $\gamma, \beta: D$

During testing batchnorm becomes a linear operator! Can be fused with the previous fully-connected or conv layer

$$\mu_j = rac{(ext{Running}) ext{ average of}}{ ext{values seen during training}}$$

Per-channel mean, shape is D

 $\sigma_j^2 = \begin{array}{c} (\text{Running}) \text{ average of} \\ \text{values seen during training} \end{array}$

Per-channel var, shape is D

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$

Normalized x, Shape is N x D

$$y_{i,j} = \gamma_j \hat{x}_{i,j} + \beta_j$$

Output, Shape is N x D

[loffe and Szegedy, 2015]

Usually inserted after Fully Connected or Convolutional layers, and before nonlinearity.

$$\widehat{x}^{(k)} = \frac{x^{(k)} - \mathbb{E}[x^{(k)}]}{\sqrt{\operatorname{Var}[x^{(k)}]}}$$

[loffe and Szegedy, 2015]

- Makes deep networks **much** easier to train!
- Improves gradient flow
- Allows higher learning rates, faster convergence
- Networks become more robust to initialization
- Acts as regularization during training
- Zero overhead at test-time: can be fused with conv!
- Behaves differently during training and testing: this is a very common source of bugs!
Transfer learning

"You need a lot of a data if you want to train/use CNNs"

AlexNet: 64 x 3 x 11 x 11

(More on this in Lecture 13)

Ma

Max pooling

Max

(More on this in Lecture 13)

Donahue et al, "DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition", ICML 2014 Razavian et al, "CNN Features Off-the-Shelf: An Astounding Baseline for Recognition", CVPR Workshops 2014

1. Train on Imagenet

FC-1000	
FC-4096	
FC-4096	
MaxPool	
Conv-512	
Conv-512	
MaxPool	
0	
Conv-512	
Conv-512	
MaxDool	
MaxPool	
Conv-256	
Conv-256	
MaxPool	
Conv-128	
Conv 129	
C011V-120	
MaxPool	
Conv-64	
Conv-64	
Imaga	
image	

1. Train on Imagenet

FC-4096
FC-4096
MaxPool
Conv-512
Conv-512
MaxPool
Conv-512
Conv-512
MaxPool
Conv-256
Conv-256
MaxPool
Conv-128
Conv-128
MaxPool
Conv-64
Conv-64

Image

FC-C FC-4096 Reinitialize FC-4096 this and train MaxPool Conv-512 Conv-512 MaxPool Conv-512 Conv-512 MaxPool Freeze these Conv-256 Conv-256 MaxPool Conv-128 Conv-128 MaxPool Conv-64 Conv-64 Image

2. Small Dataset (C classes)

Donahue et al, "DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition", ICML 2014 Razavian et al, "CNN Features Off-the-Shelf: An Astounding Baseline for Recognition", CVPR Workshops 2014

1. Train on Imagenet

FC-1000
FC-4096
FC-4096
MaxPool
Conv 512
C011V-512
Conv-512
MaxPool
Conv-512
Conv-512
MaxPool
Conv-256
Conv-256
MaxPool
Conv-128
Conv-128
MaxPool
Conv-64
Conv-64

Image

2. Small Dataset (C classes)

Donahue et al, "DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition", ICML 2014 Razavian et al, "CNN Features Off-the-Shelf: An Astounding Baseline for Recognition", CVPR Workshops 2014

Donahue et al, "DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition", ICML 2014

1. Train on Imagenet

FC-1000
FC-4096
FC-4096
MaxPool
Conv-512
Conv-512
MaxPool
Conv-512
Conv-512
MaxPool
Conv-256
Conv-256
MaxPool
Conv-128
Conv-128
MaxPool
Conv-64

Image

2. Small Dataset (C classes)

Donahue et al, "DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition", ICML 2014 Razavian et al, "CNN Features Off-the-Shelf: An Astounding Baseline for Recognition", CVPR Workshops 2014

3. Bigger dataset

FC-1000 FC-4096 FC-4096 MaxPool		very similar dataset	very different dataset
Conv-512 MaxPool Conv-512 Conv-512 Conv-512	very little data	?	?
MaxPool Conv-256 Conv-256 MaxPool			
Conv-128 Conv-128 MaxPool Conv-64 Conv-64	quite a lot of data	?	?
Image			

FC-1000 FC-4096 FC-4096 MaxPool		very similar dataset	very different dataset
Conv-512MaxPoolMore specificConv-512More specificMaxPoolMore genericMaxPoolMore generic	very little data	Use Linear Classifier on top layer	?
Conv-128 Conv-128 MaxPool Conv-64 Conv-64 Image	quite a lot of data	Finetune a few layers	?

FC-1000 FC-4096 FC-4096 MaxPool		very similar dataset	very different dataset
Conv-512 MaxPool Conv-512 MaxPool Conv-256 Conv-256 MaxPool MaxPool	very little data	Use Linear Classifier on top layer	You're in trouble Try linear classifier from different stages
Conv-128 Conv-128 MaxPool Conv-64 Conv-64	quite a lot of data	Finetune a few layers	Finetune a larger number of layers

Summary We looked in detail at:

- Activation Functions (use ReLU)
- Data Preprocessing (images: subtract mean)
- Batch Normalization (use this!)
- Transfer learning (use this if you can!)