
EECS 230 Deep Learning
Lecture 4: Back Propagation

Some slides from O. Veksler, Y. Boykov, A. Ng, Y. LeCun, G. Hinton, A. Ranzato, R. Fergus



How to train neural networks?

Bias 
vector

Weight 
matrix

Example of Multi Layer Perceptron (MLP)

qTraining == learning weight and bias



Optimization via Gradient Descent



Optimization of continuous differentiable functions

q How to minimize a function of a single variable

- Take derivative and set it to 0

- May find a closed form solution



3D plot

x1

What is “slope” of  L(x1,x2) at a given point x=(x1,x2)?

x2

Multi-variate functions

Differentiation



Multi-variate functions

Differentiation

domain of L(x1,x2) in R2

“heat-map” visualization of  L

What is “slope” of  L(x1,x2) at a given point x=(x1,x2)?

range of  
L(x1,x2)

x1

x2



direction of the steepest
ascent at point x=(x1,x2)

gradient

“partial” derivatives domain of L(x1,x2) in R2

Multi-variate functions

Differentiation

“heat-map” visualization of  L

range of  
L(x1,x2)

x1

x2

vector!



“partial” derivatives domain of L(x1,x2) in R2

Multi-variate functions

Differentiation

“heat-map” visualization of  L

range of  
L(x1,x2)

The most common optimization
method for continuous differentiable

(multi-variate) functions:

gradient descent
take a step   

towards lower values 
of the function 

x1

x2

direction of the steepest
descent at point x=(x1,x2)

negative
gradient
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- direction of (negative) gradient at point x=(x1,x2) is direction 
of the steepest descent towards lower values of function L

Example: for a function of two variables

- magnitude of gradient at x=(x1,x2) gives the value of the slope

Multi-variate functions

Gradient Descent

x1

x2

L(x1,x2) 
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Example: for a function of two variables

update equation for a point x=(x1,x2) 

Multi-variate functions

Gradient Descent

x1

x2

L(x1,x2) 

Stop at a local minima where
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Example: for a function of two variables

sensitivity to initialisation !!

Multi-variate functions

Gradient Descent

x1

x2

L(x1,x2) 



x

How to Set Learning Rate a?

• If a too large, may 
overshoot the local 
minimum and possibly 
never even converge

L(x)

x

• If a too small, too many 
iterations to converge

x(2) x(1)x(4) x(3)

L(x)



Variable Learning Rate

k = 1
x(1) = any initial guess
choose a, e
while a||ÑL(x(k))|| > e

x(k+1) = x (k) - a ÑL(x(k))
k = k + 1

If desired, can change learning rate a at each iteration

k = 1
x(1) = any initial guess
choose  e
while a||ÑL(x(k))|| > e

choose a(k)

x(k+1) = x (k) - a(k) ÑL(x(k))
k = k + 1

fixed α
gradient descent

variable α
gradient descent



Learning Rate

• Monitor learning rate by looking at how fast the 
objective function decreases

L(x)

number of iterations
or time

very high learning rate

high learning rate

low learning rate

good learning rate



Derivative and Back Propagation



How to take derivatives w.r.t. weights?

Bias 
vector

Weight 
matrix

Example of Multi Layer Perceptron (MLP)

qTraining == learning weight and bias



ComputingDerivatives: SmallExample

• Small network f(x,y,z) = (x+y)z
• Rewrite using

• q=x+y
• f(x,y,z) =qz
• each node does one 

operation

x

y

z

q=x+y
f=qz



ComputingDerivatives: SmallExample

x

y

• Small network f(x,y,z) = (x+y)z
• Rewrite using

• q=x+y
• f(x,y,z) =qz

• Example of computing f(-2,5,-4)

z

q=x+y
f=qz

-2

5

-4

3 -12



ComputingDerivatives: SmallExample

x

y

z

q=x+y
f=qz

-2

5

-4

3

-12

∂x ∂y ∂z
∂f ∂f ∂f
, ,

• Small network f(x,y,z) = (x+y)z

• Rewrite using q=x+y ⇒ f(x,y,z) =qz
• Want

∂f
∂f =1

∂q
∂f =z=−4

∂x ∂q ∂x
∂f = ∂f ∂q =−4

4
∂y ∂q ∂y
∂f = ∂f ∂q =−

∂z
∂f =q=3

∂
• for each edge, with respect to the main variable at edge origin
• using chain rule with respect to the variable at edge end, if needed

• Compute ∂f from the end backwards

chain rule for f(y(x))
∂f = ∂f ∂y
∂x ∂y ∂x



ComputingDerivatives: Chainof ChainRule

a b=h(a)
∂d
∂c

∂d
∂c

d=h(c) d

localprev

c=h(b)
∂d = ∂d ∂b ∂d = ∂c
∂a ∂b ∂a ∂b ∂b

prev local local

direction of computation

• for each edge, with respect to the main variable at edge origin
• using chain rule with respect to the variable at edge end, if needed

∂
• Compute ∂d from the end backwards

example: if h(c)=c2, then ∂d = ∂h =2c
∂c ∂c



ComputingDerivativesBackwards
x

h(W1x+b1 )
h1

h(W2h1+b2 )
h2

h(W3h2+b3 )
o

direction of computation
• Have loss function L(o)

• Need derivatives for all
∂w ∂b
∂L ∂L

,

• Will compute derivatives from end to front, backwards

• On the way will also compute intermediate derivatives ∂L
∂h

L(o)



ComputingDerivatives: Lookat OneNode

• Simplified view at a network node
• inputs x,y come in
• node computes some function h(x,y)

x
y h(x,y) h



ComputingDerivatives: Lookat OneNode

x
y h(x,y) h

already computed
∂L
∂h

• At each network node
• inputs x,y come in
• nodes computes activation function h(x,y)

• Have loss function L(·)

∂L
∂x?

?∂L
∂y



ComputingDerivatives: Lookat OneNode

∂L ∂L
∂x , ∂y• Need

•
∂x ∂y

Easyto compute local node derivatives ∂h , ∂h

x
y h(x,y) h

already computed

∂L = ∂L ∂h
∂x ∂h ∂x

∂y ∂h ∂y
∂L = ∂L ∂h ∂h

∂L



ComputingDerivatives: Lookat OneNode
• More complete view at a network node

• inputs x,y come in, get multiplied by weight w and v
• node computes function h(wx,vy)
• node output h gets multiplied by u

wx
vy h(wx,vy) uh



ComputingDerivatives: Lookat OneNode

wx
vy h(wx,vy) uh

• To be concrete, let h(i,j) = i + j



• all computation happens inside nodes, not on edges

ComputingDerivatives: Lookat OneNode

wx
vy h(wx,vy) uh

a=wx
w
x
v
y

b= vy
h=a+b c=uh

• h(i,j) = i + j
• Break into more computational nodes



ComputingDerivatives: Lookat OneNode

w
x

v
y

h=a+b c=uh

already 
computed

∂c
∂L

∂a ∂h ∂a ∂h
∂L = ∂L ∂h = ∂L

∂b ∂h ∂b ∂h
∂L = ∂L ∂h = ∂L

∂w ∂a ∂w ∂a
∂L = ∂L ∂a = ∂Lx

a=wx

∂v ∂b ∂v ∂b
b= vy

∂L = ∂L ∂b= ∂Ly

∂y ∂b ∂y ∂b
∂L = ∂L ∂b= ∂Lv

∂h ∂c ∂h ∂c
∂L = ∂L ∂c = ∂Lu

• Someof these partial derivatives are intermediate
• their values will not be used for gradient descent

direction of computation

∂x ∂a ∂x ∂a
∂L = ∂L ∂a= ∂Lw



ComputingDerivatives: Lookat OneNode

a=wx
w

v
y

h=a+b c=uh

already 
computed

∂c
∂L =2

∂h ∂c ∂h

∂a ∂h ∂a
∂L = ∂L ∂h

∂L ∂h
∂b = ∂h ∂b

b= vy ∂L

=4

=2

∂L = ∂L ∂a
∂w ∂a ∂w ∂a

= ∂Lx=8

∂x ∂a ∂x ∂a
x ∂L = ∂L ∂a= ∂Lw=4

∂v = ∂b ∂v= ∂by=8
∂L ∂L ∂b ∂L

∂y ∂b ∂y ∂b
∂L = ∂L ∂b = ∂Lv=6

∂L = ∂L ∂c=2u=4

• Example when w =1, x=2, v=3, y =4, u =2,

direction of computation

∂c
∂L =2



ComputingDerivatives: StagingComputation

• Eachnode is responsible for one function
• Tocompute exp(1/x)

x
h=1/ x g=exp(h)



ComputingDerivatives: VectorNotation
• Inputs outputs are often vectors

x
h(W1x +b1 )

h1
h(W2h1+b2 )

h2
h(W3h2+b3 )

o L(o)

• h(a) is a function from Rn to Rm
• Chain rule generalizes to vector functions



ComputingDerivatives: VectorNotation

∂xj
∂fi

• has m rows and n columns
• has in row i, column j

• Let f(x): Rn→Rm,
• x isn-dimensional vector and output f(x) ism-dimensional vector

• Jacobian matrix



ComputingDerivatives: VectorNotation
• f(x):Rn→Rmand g(x):Rk→Rn

• f(g(x)):Rk→Rm

• Chain rule for vector functions

∂f = ∂f ∂g
∂x ∂g∂x

Jacobianmatrices



VectorNotation: Lookat OneNode

∂x , ∂y
Need Jacobians

• Easy to compute local node Jacobians
∂x ∂y
∂h ∂h
,

x
y h(x,y) h

∂L ∂L ∂h
∂x = ∂h ∂x

∂y ∂h ∂y
∂L = ∂L ∂h

already 
computed

∂L
∂h

Jacobianmatrices

• h, x, yare vectors
• already computed Jacobian
• ∂L ∂L

∂L
∂h



VectorNotation: Lookat OneNode

x

W h=Wx h

∂L
∂W ∂h ∂W

= ∂L ∂h

already 
computed

∂L
∂h

Still denote Jacobian by
∂W

∂L = ∂L ∂h
∂x ∂h ∂x

• Canapply to matrices (and tensors) aswell
• But first vectorize matrix (or tensor)
• Say W is 10 x 5, stretch into 50x1 vector
• ∂h



VectorNotation: Lookat OneNode
• Easy to compute local node Jacobians

∂x ∂W
∂h ∂h
,

x

W h=Wx h

∂W ∂h ∂W

∂L ∂L ∂h
=

already 
computed

∂L
∂h

• But they can get very large (although sparse)

• Sayh is 1000 x 1, W is 1000 x 500, then ∂h is 1000 x 500,000
∂W

∂L = ∂L ∂h
∂x ∂h ∂x



Summary

qGradient Descent Optimization
qChain rule of derivatives
qBack propagation

Next

qAdvanced optimization methods
qNetwork regularization
qPractical tricks for training neural networks


