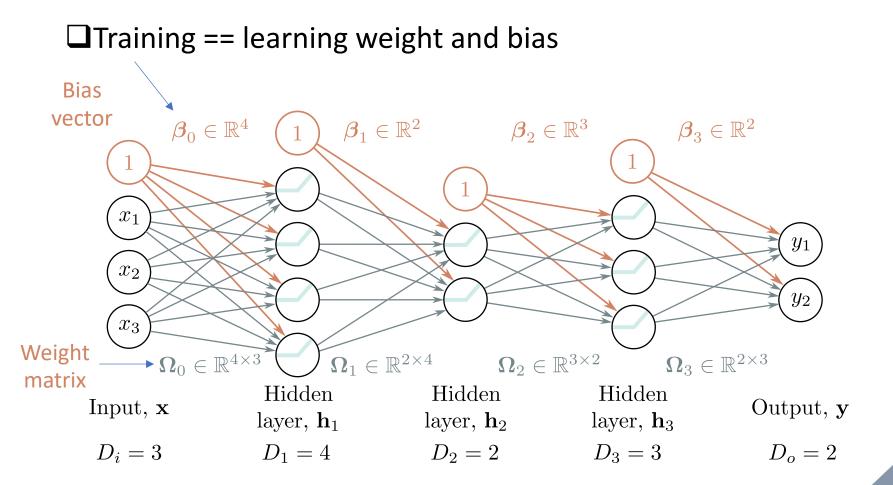


EECS 230 Deep Learning Lecture 4: Back Propagation

Some slides from O. Veksler, Y. Boykov, A. Ng, Y. LeCun, G. Hinton, A. Ranzato, R. Fergus

How to train neural networks?



Example of Multi Layer Perceptron (MLP)

Optimization via Gradient Descent

Optimization of continuous differentiable functions

□ How to minimize a function of a single variable

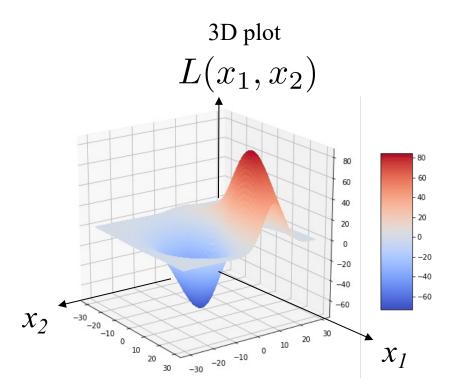
$$f(x) = (x-5)^2$$

- Take derivative and set it to 0

$$\frac{d}{dx}f(x) = 0$$

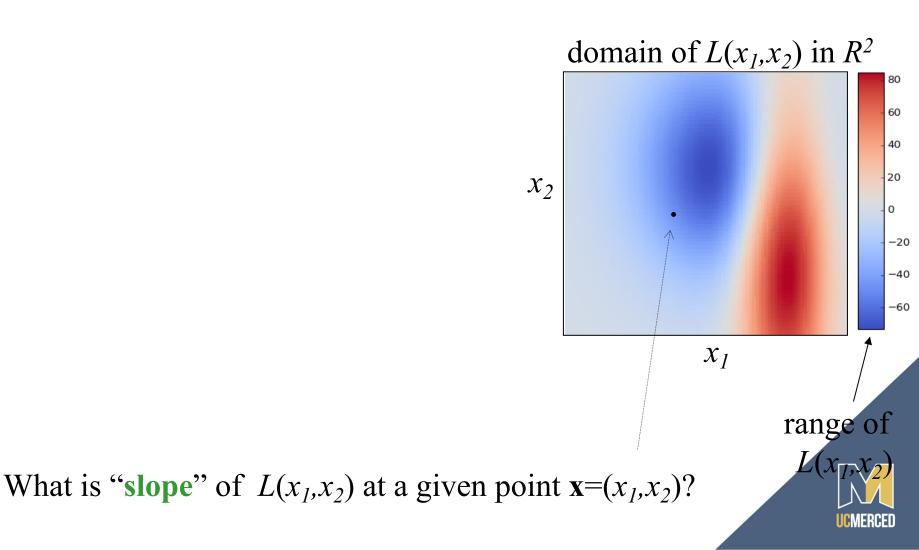
- May find a closed form solution

$$\frac{d}{dx}f(x) = 2(x-5) = 0 \qquad \Rightarrow \qquad x = 5$$

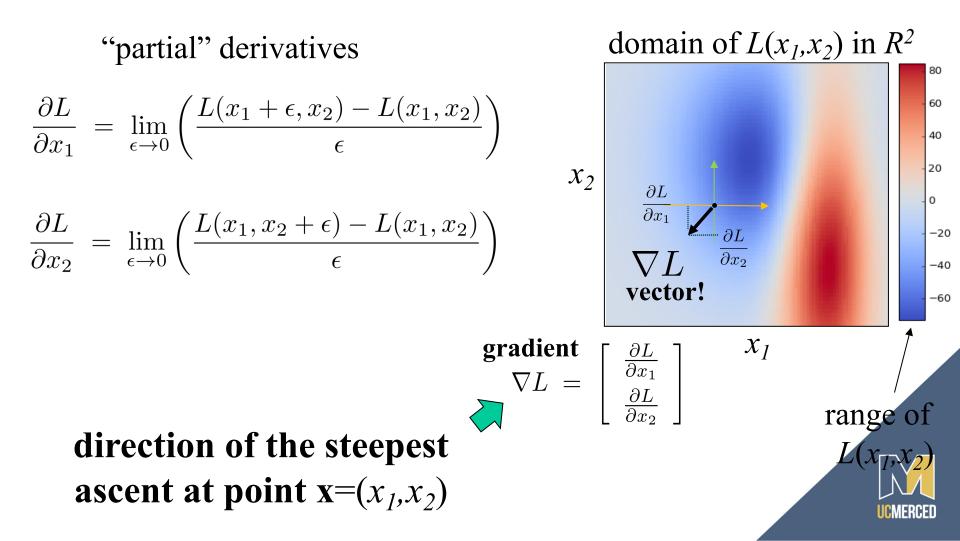


What is "slope" of $L(x_1, x_2)$ at a given point $\mathbf{x} = (x_1, x_2)$?

"heat-map" visualization of L



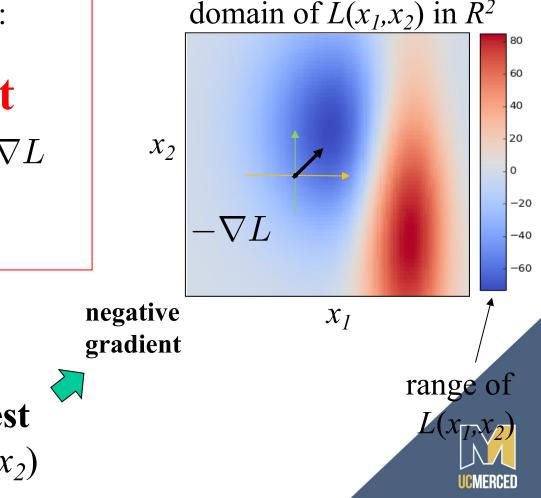
"heat-map" visualization of L



The most common optimization method for continuous differentiable (multi-variate) functions:

gradient descent

take a step $\mathbf{x}' = \mathbf{x} - \alpha \nabla L$ towards lower values of the function "heat-map" visualization of L

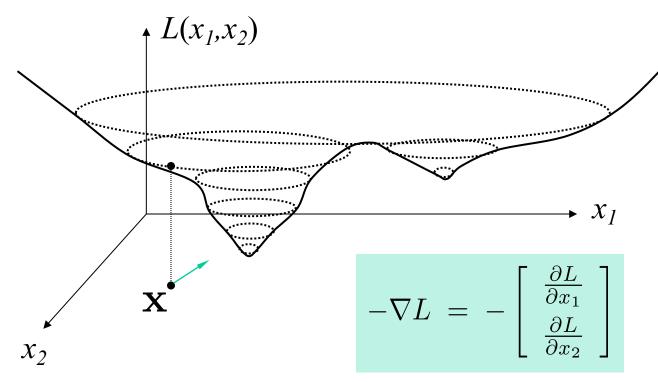


direction of the steepest descent at point $\mathbf{x}=(x_1,x_2)$

Multi-variate functions

Gradient Descent

Example: for a function of two variables

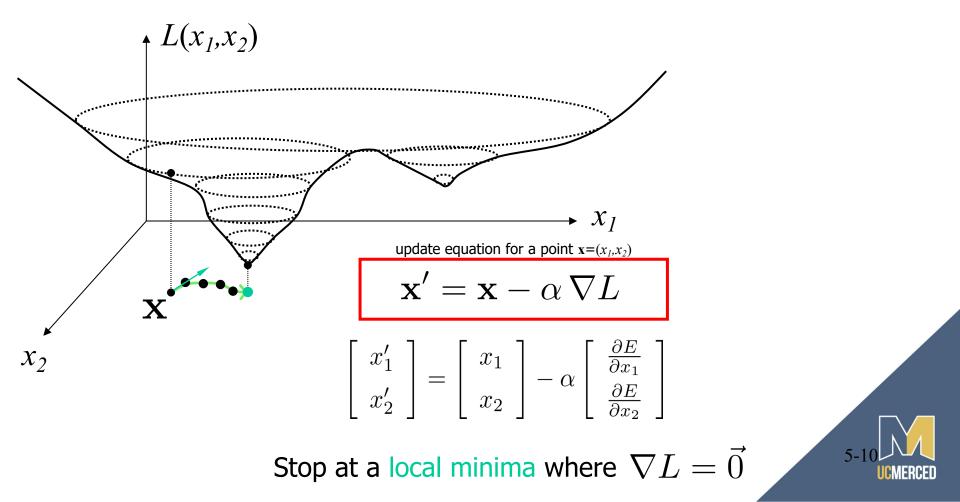


- direction of (negative) gradient at point $\mathbf{x} = (x_1, x_2)$ is direction of the steepest descent towards lower values of function L
- magnitude of gradient at $\mathbf{x} = (x_1, x_2)$ gives the value of the slope UCMER

Multi-variate functions

Gradient Descent

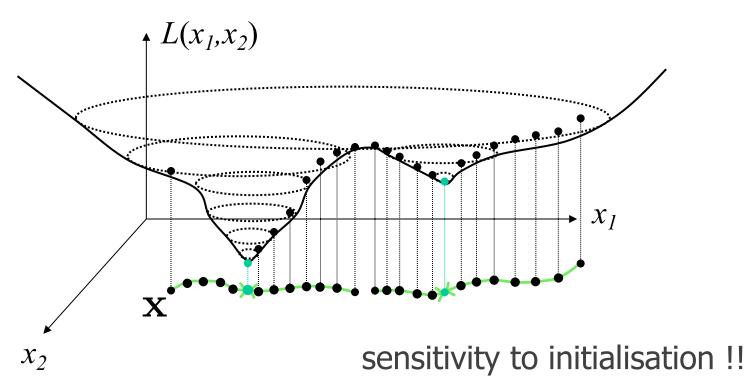
Example: for a function of two variables



Multi-variate functions

Gradient Descent

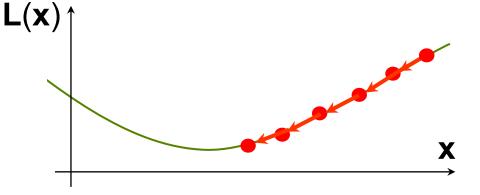
Example: for a function of two variables



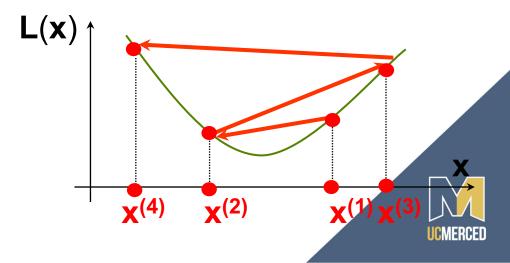
How to Set Learning Rate α ?

$$\mathbf{x}' = \mathbf{x} - \alpha \, \nabla L$$

If α too small, too many iterations to converge



 If α too large, may overshoot the local minimum and possibly never even converge



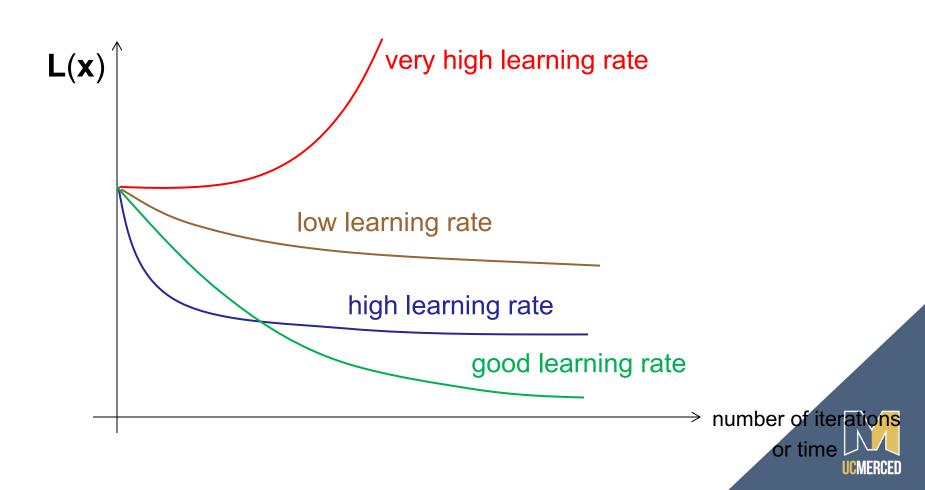
Variable Learning Rate

If desired, can change learning rate α at each iteration

fixed α gradient descent variable α gradient descent

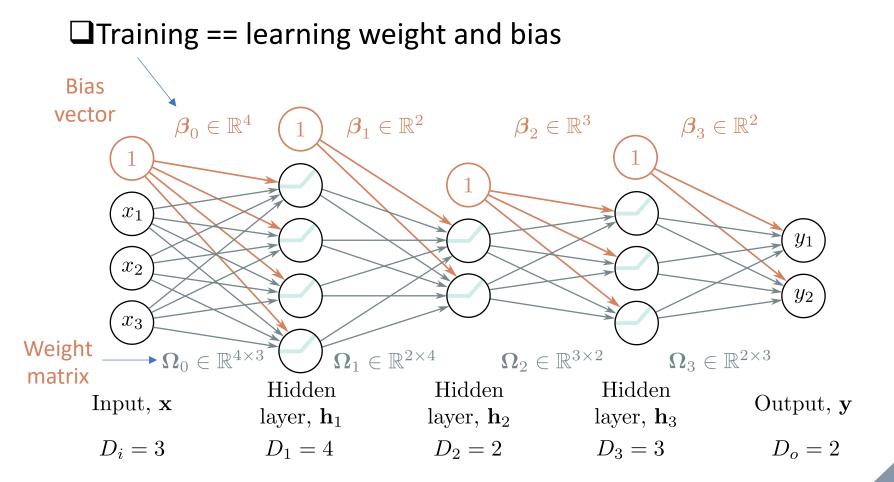
Learning Rate

 Monitor learning rate by looking at how fast the objective function decreases



Derivative and Back Propagation

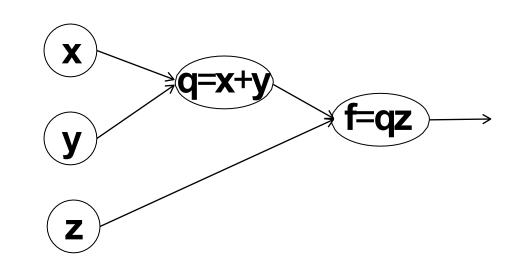
How to take derivatives w.r.t. weights?



Example of Multi Layer Perceptron (MLP)

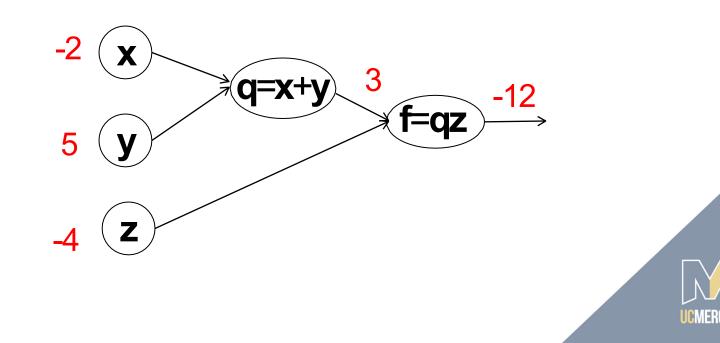
Computing Derivatives: Small Example

- Small network f(x,y,z) = (x+y)z
- Rewrite using
 - q = x + y
- f(x,y,z) = qz
- each node does one operation



Computing Derivatives: Small Example

- Small network f(x,y,z) = (x+y)z
- Rewrite using
 - q = x + y
 - f(x,y,z) = qz
- Example of computing f(-2,5,-4)



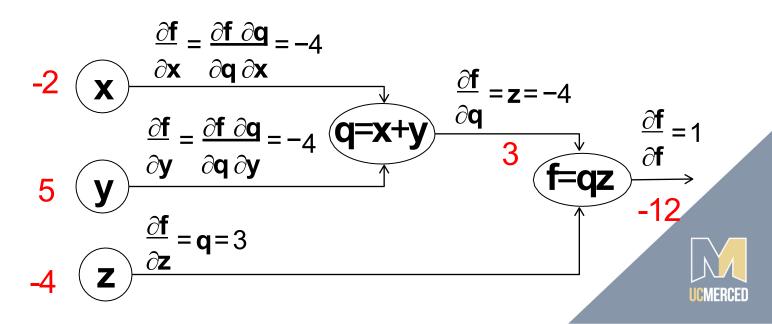
Computing Derivatives: Small Example

- Small network f(x,y,z) = (x+y)z
- Rewrite using $\mathbf{q} = \mathbf{x} + \mathbf{y} \Rightarrow \mathbf{f}(\mathbf{x},\mathbf{y},\mathbf{z}) = \mathbf{q}\mathbf{z}$
- Want $\frac{\partial \mathbf{f}}{\partial \mathbf{x}^{'} \partial \mathbf{y}^{'} \partial \mathbf{z}}$

chain rule for
$$\mathbf{f}(\mathbf{y}(\mathbf{x}))$$

$$\frac{\partial \mathbf{f}}{\partial \mathbf{x}} = \frac{\partial \mathbf{f}}{\partial \mathbf{y}} \frac{\partial \mathbf{y}}{\partial \mathbf{x}}$$

- Compute $\frac{\partial \mathbf{f}}{\partial}$ from the end backwards
 - for each edge, with respect to the main variable at edge origin
 - using chain rule with respect to the variable at edge end, if needed

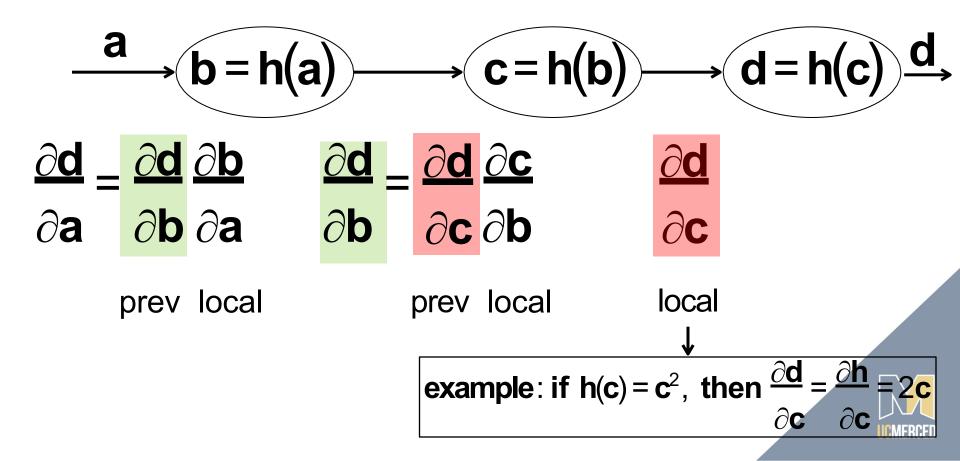


Computing Derivatives: Chain of Chain Rule

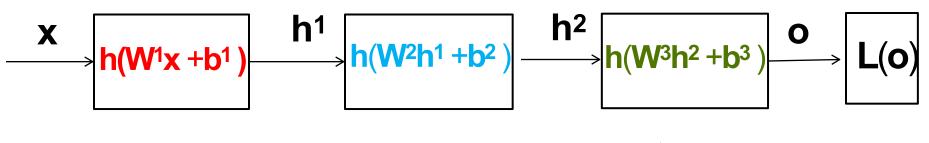
• Compute $\frac{\partial \mathbf{d}}{\partial \mathbf{d}}$ from the end backwards

direction of computation

- for each edge, with respect to the main variable at edge origin
- using chain rule with respect to the variable at edge end, if needed



Computing Derivatives Backwards



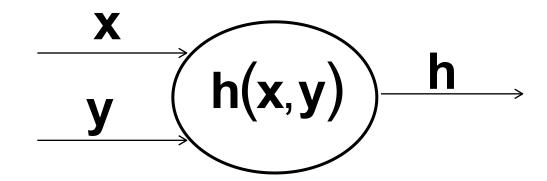
direction of computation

- Have loss function **L**(**o**)
- Need derivatives for all

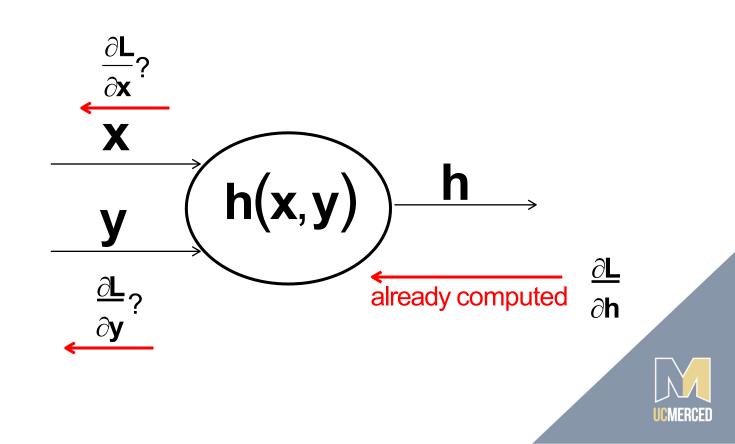
- Will compute derivatives from end to front, backwards
- On the way will also compute intermediate derivatives $\frac{\partial \mathbf{L}}{\partial \mathbf{r}}$

∂h

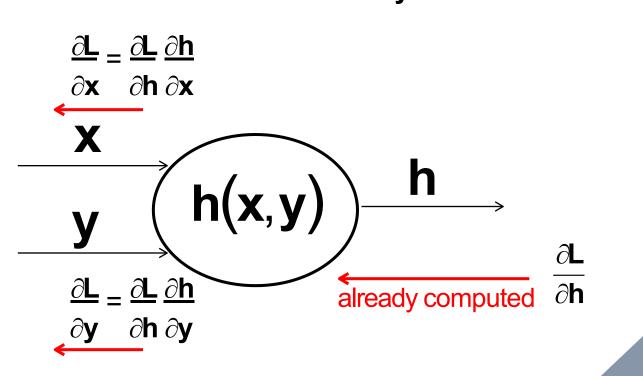
- Simplified view at a network node
 - inputs **x**,**y** come in
 - node computes some function h(x,y)



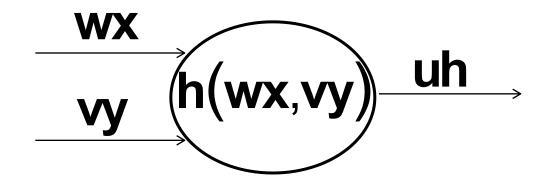
- At each network node
 - inputs **x**,**y** come in
 - nodes computes activation function h(x,y)
- Have loss function $L(\cdot)$

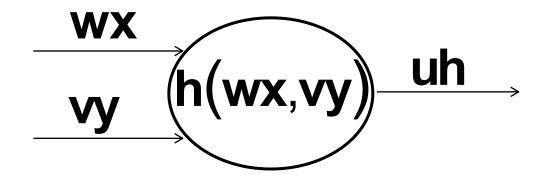


- Need $\frac{\partial \mathbf{L}}{\partial \mathbf{x}}, \frac{\partial \mathbf{L}}{\partial \mathbf{y}}$
- Easy to compute local node derivatives $\frac{\partial \mathbf{h}}{\partial \mathbf{x}}$, $\frac{\partial \mathbf{h}}{\partial \mathbf{y}}$

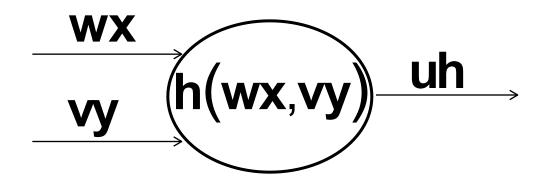


- More complete view at a network node
 - inputs x,y come in, get multiplied by weight w and v
 - node computes function h(wx,vy)
 - node output **h** gets multiplied by **u**

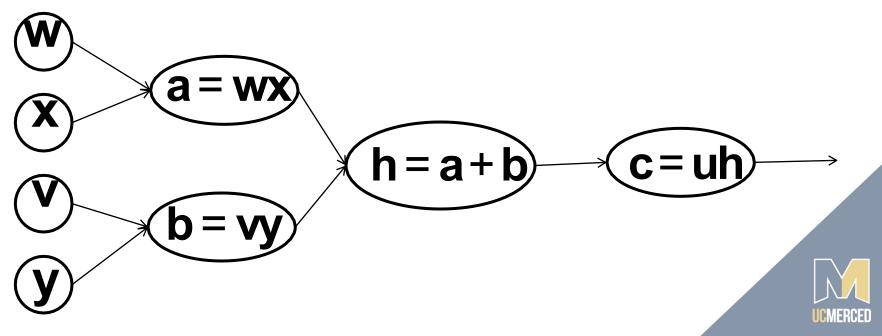


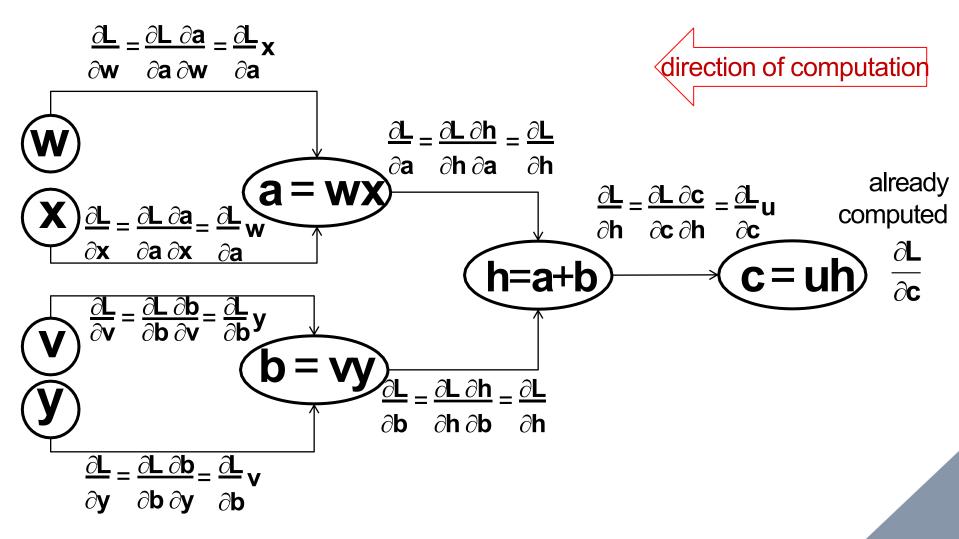


• To be concrete, let h(i,j) = i + j

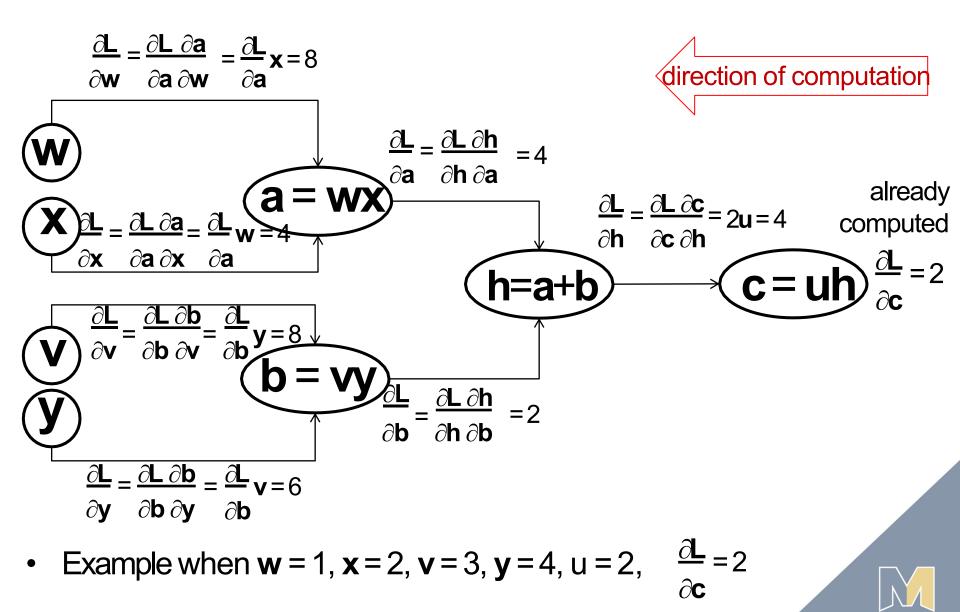


- h(i,j) = i + j
- Break into more computational nodes
 - all computation happens inside nodes, not on edges



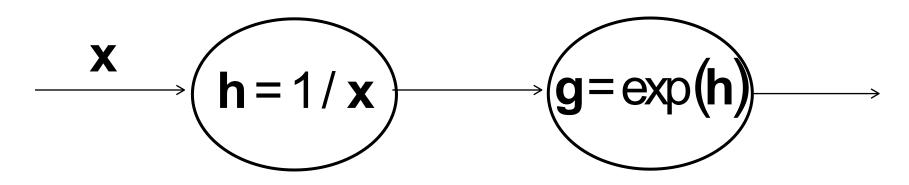


- Some of these partial derivatives are intermediate
 - their values will not be used for gradient descent



Computing Derivatives: Staging Computation

- Each node is responsible for one function
- To compute exp(1/x)



Computing Derivatives: Vector Notation

• Inputs outputs are often vectors

$$\begin{array}{c} x \\ \hline h(W^{1}x + b^{1}) \\ \hline h(W^{2}h^{1} + b^{2}) \\ \hline h(W^{2}h^{2} + b^{2}) \\ \hline h(W^{3}h^{2} + b^{3}) \\ \hline \end{array} \begin{array}{c} o \\ L(o) \\ \hline \end{array}$$

- h(a) is a function from \mathbb{R}^n to \mathbb{R}^m
- Chain rule generalizes to vector functions

Computing Derivatives: Vector Notation

- Let $\mathbf{f}(\mathbf{x}): \mathbf{R}^n \rightarrow \mathbf{R}^m$,
 - \mathbf{x} is \mathbf{n} -dimensional vector and output $\mathbf{f}(\mathbf{x})$ is \mathbf{m} -dimensional vector
- Jacobian matrix
 - has **m** rows and **n** columns
 - has $\frac{\partial \mathbf{f}_i}{\partial \mathbf{x}_j}$ in row **i**, column **j**

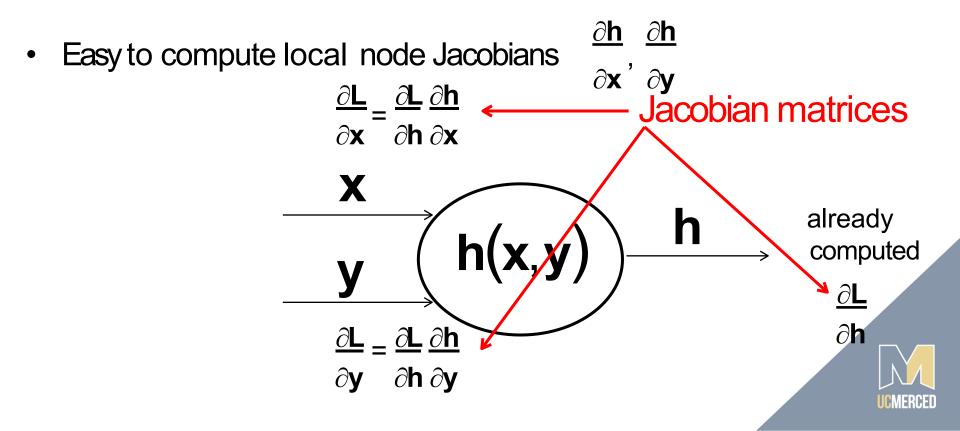
Computing Derivatives: Vector Notation

- $f(x): \mathbb{R}^n \rightarrow \mathbb{R}^m$ and $g(x): \mathbb{R}^k \rightarrow \mathbb{R}^n$
- f(g(x)): R^k→R^m
- Chain rule for vector functions

 $\partial \mathbf{f} = \partial \mathbf{f} \partial \mathbf{g}$ $\partial \mathbf{x} \quad \partial \mathbf{g} \, \partial \mathbf{x}$ Jacobian matrices

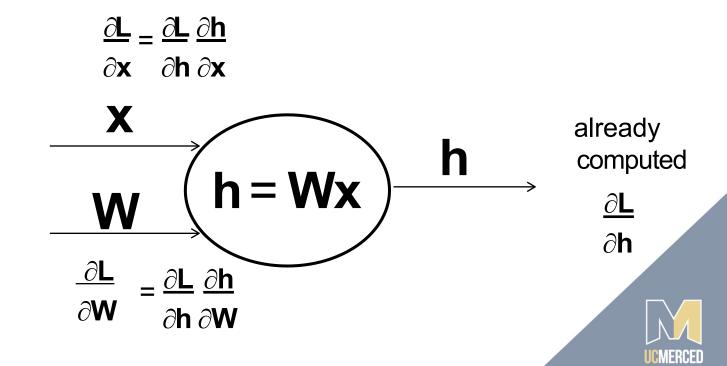
Vector Notation: Look at One Node

- h, x, y are vectors
- already computed Jacobian $\frac{\partial \mathbf{L}}{\partial \mathbf{h}}$
- Need Jacobians $\frac{\partial L}{\partial x}, \frac{\partial L}{\partial y}$



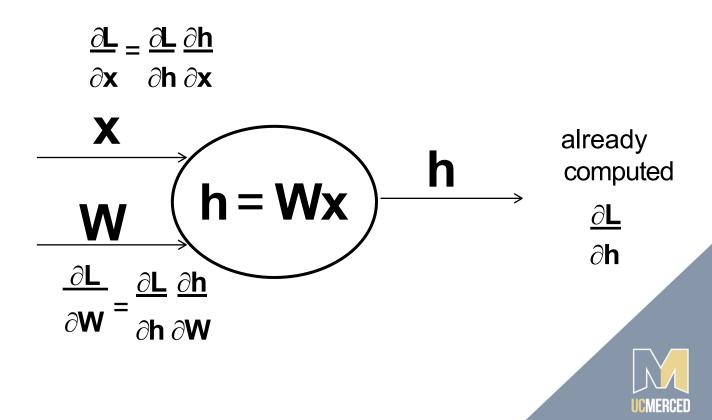
Vector Notation: Look at One Node

- Can apply to matrices (and tensors) as well
- But first vectorize matrix (or tensor)
- Say W is 10 x 5, stretch into 50x1 vector
- Still denote Jacobian by $\frac{\partial h}{\partial W}$



Vector Notation: Look at One Node

- Easy to compute local node Jacobians $\frac{\partial \mathbf{h}}{\partial \mathbf{x}}, \frac{\partial \mathbf{h}}{\partial \mathbf{W}}$
- But they can get very large (although sparse)
- Say h is 1000 x 1, W is 1000 x 500, then ∂W



Summary

□Gradient Descent Optimization

- Chain rule of derivatives
- □Back propagation

Next

Advanced optimization methods

□Network regularization

□ Practical tricks for training neural networks

