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EECS 230 Deep Learning
Lecture 4: Back Propagation

Some slides from O. Veksler, Y. Boykov, A. Ng, Y. LeCun, G. Hinton, A. Ranzato, R. Fergus



How to train neural networks?

dTraining == learning weight and bias

Bias

vector By € R B, € R? By €R’ Bs € R?

Weight
matrIXIn b x Hidden Hidden Hidden Outout
put, layer, hy layer, ho layer, hs WPt ¥
D;,=3 Dy =14 Dy =2 D3 =3 D,=2

Example of Multi Layer Perceptron (MLP)
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Optimization via Gradient Descent



Optimization of continuous differentiable functions

(1 How to minimize a function of a single variable
2
f(z) = (z —5)
- Take derivative and set itto O
d
Ef(l') =0
- May find a closed form solution

d
%f(a:):2(:1:—5)20 =




Multi-variate functions

Differentiation

3D plot
L(Zlfl, 332)

4

What is “slope” of L(x;,x,) at a given point X=(x,,x,)?




Multi-variate functions

Differentiation

“heat-map” visualization of L

domain of L(x,x,) in R’

What is “slope” of L(x;,x,) at a given point X=(x,,x,)?
UCMERCED



Multi-variate functions

Differentiation
“heat-map” visualization of L
“partial” derivatives domain of L(x,,x,) in R

oL — lim (L(fl?l + €, T2) — L($1,$2)) |
0xq e—0 €

x2 8L 20
oL _ . (Llanzate) — Lz, 22) & 20
0xo €50 € VL

vector!

o1
VL = aLl

Oy

gradient { oL

direction of the steepest
ascent at point x=(x,,x,)
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Multi-variate functions

Differentiation

The most common optimization “heat-map” visualization of L
method for continuous differentiable
(multi-variate) functions: domain of L(x,x,) in R’

osradient descent

takeastep X =x —a VL X2
towards lower values
of the function

negative
gradient

direction of the steepest
descent at point x=(x,,x,)
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Multi-variate functions

Gradient Descent

Example: for a function of two variables
 L(x,x))

»

- direction of (negative) gradient at point x=(x,,x,) is directio
of the steepest descent towards lower values of function

- magnitude of gradient at x=(x,,x,) gives the value of




Multi-variate functions

Gradient Descent

Example: for a function of two variables
 L(x,x))

»
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update equation for a point x=(x,,x,)

x'=x—aVL

9B
. 8371
Al sE

Oy

Stop at a local minima where VI = 0



Multi-variate functions

Gradient Descent

Example: for a function of two variables
 L(x,x))

»

X sensitivity to initialisation !!




How to Set Learning Rate a?

x'=x—aVL

If o too small, too many L(x) 1
iterations to converge

If o too large, may
overshoot the local
minimum and possibly
never even converge




Variable Learning Rate

If desired, can change learning rate a at each iteration

k=1 k=1
x(1) = any initial guess x1) = any initial guess
choose a,, € choose &
while a||VL(xW)|| > & | while a|[VL(xW)|| > &

x(+1) = x (K) - g, VL(x(K) choose a¥)

K=K+ 1 x(k11) = x 09 - o) WL (x(K)

k=k+1
fixed a variable a

gradient descent gradient descent



Learning Rate

Monitor learning rate by looking at how fast the
objective function decreases

L(x)

very high learning rate

low learning rate

high learning rate

Wning rate

number
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Derivative and Back Propagation



How to take derivatives w.r.t. weights?

dTraining == learning weight and bias

Bias

vector By € R B, € R? By €R’ Bs € R?

Weight
matrIXIn b x Hidden Hidden Hidden Outout
put, layer, hy layer, ho layer, hs WPt ¥
D;,=3 Dy =14 Dy =2 D3 =3 D,=2

Example of Multi Layer Perceptron (MLP)



Computing Derivatives: Small Example

Small network f(x,y,z) = (x+y)z
Rewrite using

* q=Xxty @\ )
f(x,y,z)=qz 0 @ @
Z

each node does one
operation




Computing Derivatives: Small Example

« Small network f(x,y,z) = (x+y)z
* Rewrite using
* =Xty
« f(xy,z)=qz
« Example of computing f(-2,5,4)

: 3_12

4 (2)




Computing Derivatives: Small Example

Small network f(x,y,z) = (x+y)z

Rewrite using q=x+y = f(x,y,z)=

Want aad

ax’ay’az

Compute = from the end backwards

0

chain rule for f(y(x))

of _ of oy
OX 0y OX

 for each edge, with respect to the main variable at edge origin
using chain rule with respect to the variable at edge end, if needed

5 Q oX  0qox

of _of oq._ 4
_of oq._ 4 q=xty
ay oq oy
a—fz =3
oz




Computing Derivatives: Chain of Chain Rule

« Compute & from the end backwards irection of computation]

 for each edge, with respect to the main variable at edge origin
using chain rule with respect to the variable at edge end, if needed

o) o) — 66 .

od_odgob ad_adZdc od
oa oOboa ocb ocob oC

prev local prev local local
Y
example: if h(c)=c?, then

od _ gh
ocl oc

=2C




— s h(W'x +b')

Computing Derivatives Backwards

X h1

Have loss function L(o)

Need derivatives for all

h(W2h! +b2 )

oL oL
ow 0Ob

h2

 ——

h(WBh2 +b3 ) ——| L(0)

@eeﬁon of computation

Will compute derivatives from end to front, backwards

On the way will also compute intermediate derivatives <=

oL

oh




Computing Derivatives: Look at One Node

« Simplified view at a network node
* Inputs x,y come in
* node computes some function h(x,y)




Computing Derivatives: Look at One Node

« At each network node

* inputs X,y come in

* nodes computes activation function h(x,y)
« Have loss function L(-)

s oL
=9 already computed 5




Computing Derivatives: Look at One Node

oL oL
Need &,5
ch ¢Jh

« Easyto compute local node derivatives =,
oX oy

&L _ AL oh

ox oh ox

oL
< o
oL _ d-¢oh already computed ¢h




Computing Derivatives: Look at One Node

« More complete view at a network node
 Inputs x,y come in, get multiplied by weight wand v
« node computes function h(wx,vy)
* node output h gets multiplied by u

WX
vy h(wx,vy

)uh




Computing Derivatives: Look at One Node

« Tobe concrete, let h(i,j) =i +]j




* h(ij)=i+]

Computing Derivatives: Look at One Node

« Break into more computational nodes

 all computation happens inside nodes, not on edges

P ET N
(b=vy)

QX E



Computing Derivatives: Look at One Node

oL _oloa_dl
OW oJaow oa @ecﬁon of computation

a= A _doc A already
oL_dca_d s - - u computed

OX 0adX oa Ec_l_\bah &ah@ 8_L
L_aALb_oL, ?j c-u oc

W

V ov _obov obY b
8L cLoh _dL

ob chob oh

A _doh _oL
@ )a choa oh

aL dLb_d
oy oboy b

« Some of these partial derivatives are intermediate
their values will not be used for gradient descent




Computing Derivatives: Look at One Node

oL _oL ca
OW 0aow

:Q'x=8
oa

_doa_ &Q

ocaoX oa

@ecﬁon of computation

already

oL A b &L
V ov obov b

y_

computed

aL dLob_d
oy

« Examplewhenw=1,x=2,v=3,y=4,u=2,

ob oy 6b

=6

L\ah 2u= b
E?y Ce=ub”
ch

=8f17) =2

& I



Computing Derivatives: Staging Computation

« Each node is responsible for one function
* To compute exp(1/x)




Computing Derivatives: Vector Notation
* Inputs outputs are often vectors

X h1 h2 o
= Jh(W'x +b?) h(W2h' +b2 ) —h(W3h2 +b3 )| L(0)

* h(a)is afunction from R" to Rm
 Chain rule generalizes to vector functions




Computing Derivatives: Vector Notation
* Let f(x): R*r—>Rm,

» Xis n-dimensional vector and output f(x) is m-dimensional vector
 Jacobian matrix

* has mrows and ncolumns

* has ﬂ In row i, column j

OX;




Computing Derivatives: Vector Notation
* f(x): RsRmand g(x): R«—Rn

* f(g(x)): R—Rm

 Chainrule for vector functions

Jacobian matrices




Vector Notation: Look at One Node

h, X, y are vectors
already computed Jacobian oL

Need Jacobians JL dL

X’ oy
. ch ¢ch
Easy to compute local node Jacobians ,
oL L oh x -
= < Jacobian matrices
ox ochox

X

already
y computed
ol _d.oh




Vector Notation: Look at One Node

Can apply to matrices (and tensors) as well

But first vectorize matrix (or tensor)
Say Wis 10 x 5, stretch into 50x1 vector

Still denote Jacobian by ch

oW
ol _ cdL oh
ox ohox
X already
h computed
W h=Wx oL
ch
oL _oLoh

W  5h oW



Vector Notation: Look at One Node

ch ¢h

ox oW

« Butthey can get very large (although sparse)

« Sayhis 1000 x 1, Wis 1000 x 500, then dh_is 1000 x 500,000

« Easyto compute local node Jacobians

oW
ol _ dLoh
oX ohox
X already
h computed

w (h=Wx oL
ch

<L oL oh

W~ oh oW



Summary

dGradient Descent Optimization
(dChain rule of derivatives
(JBack propagation

Next

JAdvanced optimization methods
dNetwork regularization
dPractical tricks for training neural networks




