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Shallow Neural Network



From last lecture: 1D Linear regression

qModel:

qParameters
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From last lecture: Linear Classification

qFor example: fish classification - salmon or sea bass?
qextract two features, fish length and fish brightness

qyi is the output (label or target) for example xi
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Linear Classification (perceptron)
qFor two class problem and 2-dimensional data (feature vectors)

salmon x1

x2

w0+w1x1+w2x2
good 

separation
by simple
threshold

* * *

“good” 
linear transformation
from 2D space to 1D 1

0

f(w,x)  =  u (w0+w1x1+w2x2) f(w,x) ϵ {0,1}thresholding
can be formally
represented by this
prediction function

0

1

0

u(t)

t
unit step function
(a.k.a. Heaviside function)

label

label



Neural Unit

• Take weighted sum of inputs, plus a bias

• Instead of just using z, we'll apply a nonlinear 
activation function f:

2 CHAPTER 7 • NEURAL NETWORKS AND NEURAL LANGUAGE MODELS

7.1 Units

The building block of a neural network is a single computational unit. A unit takes
a set of real valued numbers as input, performs some computation on them, and
produces an output.

At its heart, a neural unit is taking a weighted sum of its inputs, with one addi-
tional term in the sum called a bias term. Given a set of inputs x1...xn, a unit hasbias term
a set of corresponding weights w1...wn and a bias b, so the weighted sum z can be
represented as:

z = b+
X

i

wixi (7.1)

Often it’s more convenient to express this weighted sum using vector notation; recall
from linear algebra that a vector is, at heart, just a list or array of numbers. Thusvector
we’ll talk about z in terms of a weight vector w, a scalar bias b, and an input vector
x, and we’ll replace the sum with the convenient dot product:

z = w · x+b (7.2)

As defined in Eq. 7.2, z is just a real valued number.
Finally, instead of using z, a linear function of x, as the output, neural units

apply a non-linear function f to z. We will refer to the output of this function as
the activation value for the unit, a. Since we are just modeling a single unit, theactivation
activation for the node is in fact the final output of the network, which we’ll generally
call y. So the value y is defined as:

y = a = f (z)

We’ll discuss three popular non-linear functions f () below (the sigmoid, the tanh,
and the rectified linear ReLU) but it’s pedagogically convenient to start with the
sigmoid function since we saw it in Chapter 5:sigmoid

y = s(z) =
1

1+ e�z (7.3)

The sigmoid (shown in Fig. 7.1) has a number of advantages; it maps the output
into the range [0,1], which is useful in squashing outliers toward 0 or 1. And it’s
differentiable, which as we saw in Section ?? will be handy for learning.

Figure 7.1 The sigmoid function takes a real value and maps it to the range [0,1]. It is
nearly linear around 0 but outlier values get squashed toward 0 or 1.
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Non-linear Activation Function

Sigmoid
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Final function the unit is computing
7.1 • UNITS 3

Substituting Eq. 7.2 into Eq. 7.3 gives us the output of a neural unit:

y = s(w · x+b) =
1

1+ exp(�(w · x+b))
(7.4)

Fig. 7.2 shows a final schematic of a basic neural unit. In this example the unit
takes 3 input values x1,x2, and x3, and computes a weighted sum, multiplying each
value by a weight (w1, w2, and w3, respectively), adds them to a bias term b, and then
passes the resulting sum through a sigmoid function to result in a number between 0
and 1.
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Figure 7.2 A neural unit, taking 3 inputs x1, x2, and x3 (and a bias b that we represent as a
weight for an input clamped at +1) and producing an output y. We include some convenient
intermediate variables: the output of the summation, z, and the output of the sigmoid, a. In
this case the output of the unit y is the same as a, but in deeper networks we’ll reserve y to
mean the final output of the entire network, leaving a as the activation of an individual node.

Let’s walk through an example just to get an intuition. Let’s suppose we have a
unit with the following weight vector and bias:

w = [0.2,0.3,0.9]
b = 0.5

What would this unit do with the following input vector:

x = [0.5,0.6,0.1]

The resulting output y would be:

y = s(w · x+b) =
1

1+ e�(w·x+b) =
1

1+ e�(.5⇤.2+.6⇤.3+.1⇤.9+.5) =
1

1+ e�0.87 = .70

In practice, the sigmoid is not commonly used as an activation function. A function
that is very similar but almost always better is the tanh function shown in Fig. 7.3a;tanh
tanh is a variant of the sigmoid that ranges from -1 to +1:

y =
ez � e�z

ez + e�z (7.5)

The simplest activation function, and perhaps the most commonly used, is the rec-
tified linear unit, also called the ReLU, shown in Fig. 7.3b. It’s just the same as xReLU
when x is positive, and 0 otherwise:

y = max(x,0) (7.6)
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An example

Suppose a unit has:
w = [0.2,0.3,0.9] 

b = 0.5 

What happens with input x:
x = [0.5,0.6,0.1] 

7.1 • UNITS 3
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Other non-linear activation function
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tanh ReLU
Rectified Linear Unit
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mean the final output of the entire network, leaving a as the activation of an individual node.

Let’s walk through an example just to get an intuition. Let’s suppose we have a
unit with the following weight vector and bias:

w = [0.2,0.3,0.9]
b = 0.5

What would this unit do with the following input vector:

x = [0.5,0.6,0.1]

The resulting output y would be:

y = s(w · x+b) =
1

1+ e�(w·x+b) =
1

1+ e�(.5⇤.2+.6⇤.3+.1⇤.9+.5) =
1

1+ e�0.87 = .70

In practice, the sigmoid is not commonly used as an activation function. A function
that is very similar but almost always better is the tanh function shown in Fig. 7.3a;tanh
tanh is a variant of the sigmoid that ranges from -1 to +1:

y =
ez � e�z

ez + e�z (7.5)

The simplest activation function, and perhaps the most commonly used, is the rec-
tified linear unit, also called the ReLU, shown in Fig. 7.3b. It’s just the same as zReLU
when z is positive, and 0 otherwise:

y = max(z,0) (7.6)

Most Common:



Perceptron

• A very simple neural unit 
• Binary output  (0 or 1)
• No non-linear activation function

7.2 • THE XOR PROBLEM 5

output y of a perceptron is 0 or 1, and is computed as follows (using the same weight
w, input x, and bias b as in Eq. 7.2):

y =
⇢

0, if w · x+b  0
1, if w · x+b > 0 (7.7)

It’s very easy to build a perceptron that can compute the logical AND and OR
functions of its binary inputs; Fig. 7.4 shows the necessary weights.
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Figure 7.4 The weights w and bias b for perceptrons for computing logical functions. The
inputs are shown as x1 and x2 and the bias as a special node with value +1 which is multiplied
with the bias weight b. (a) logical AND, showing weights w1 = 1 and w2 = 1 and bias weight
b = �1. (b) logical OR, showing weights w1 = 1 and w2 = 1 and bias weight b = 0. These
weights/biases are just one from an infinite number of possible sets of weights and biases that
would implement the functions.

It turns out, however, that it’s not possible to build a perceptron to compute
logical XOR! (It’s worth spending a moment to give it a try!)

The intuition behind this important result relies on understanding that a percep-
tron is a linear classifier. For a two-dimensional input x1 and x2, the perception
equation, w1x1 +w2x2 +b = 0 is the equation of a line. (We can see this by putting
it in the standard linear format: x2 = (�w1/w2)x1 +(�b/w2).) This line acts as a
decision boundary in two-dimensional space in which the output 0 is assigned to alldecision

boundary
inputs lying on one side of the line, and the output 1 to all input points lying on the
other side of the line. If we had more than 2 inputs, the decision boundary becomes
a hyperplane instead of a line, but the idea is the same, separating the space into two
categories.

Fig. 7.5 shows the possible logical inputs (00, 01, 10, and 11) and the line drawn
by one possible set of parameters for an AND and an OR classifier. Notice that there
is simply no way to draw a line that separates the positive cases of XOR (01 and 10)
from the negative cases (00 and 11). We say that XOR is not a linearly separablelinearly

separable
function. Of course we could draw a boundary with a curve, or some other function,
but not a single line.

7.2.1 The solution: neural networks
While the XOR function cannot be calculated by a single perceptron, it can be cal-
culated by a layered network of units. Let’s see an example of how to do this from
Goodfellow et al. (2016) that computes XOR using two layers of ReLU-based units.
Fig. 7.6 shows a figure with the input being processed by two layers of neural units.
The middle layer (called h) has two units, and the output layer (called y) has one
unit. A set of weights and biases are shown for each ReLU that correctly computes
the XOR function.

Let’s walk through what happens with the input x = [0 0]. If we multiply each
input value by the appropriate weight, sum, and then add the bias b, we get the



Perceptron from the 50’s and 60’s

https://www.youtube.com/watch?v=cNxadbrN_aI&t=71s

https://www.youtube.com/watch?v=cNxadbrN_aI&t=71s


The XOR problem

qCan perceptron compute simple functions of input?

Minsky and Papert (1969)
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(a) (b)
Figure 7.3 The tanh and ReLU activation functions.

These activation functions have different properties that make them useful for
different language applications or network architectures. For example, the tanh func-
tion has the nice properties of being smoothly differentiable and mapping outlier
values toward the mean. The rectifier function, on the other hand has nice properties
that result from it being very close to linear. In the sigmoid or tanh functions, very
high values of z result in values of y that are saturated, i.e., extremely close to 1,saturated
and have derivatives very close to 0. Zero derivatives cause problems for learning,
because as we’ll see in Section 7.4, we’ll train networks by propagating an error
signal backwards, multiplying gradients (partial derivatives) from each layer of the
network; gradients that are almost 0 cause the error signal to get smaller and smaller
until it is too small to be used for training, a problem called the vanishing gradientvanishing

gradient
problem. Rectifiers don’t have this problem, since the derivative of ReLU for high
values of z is 1 rather than very close to 0.

7.2 The XOR problem

Early in the history of neural networks it was realized that the power of neural net-
works, as with the real neurons that inspired them, comes from combining these
units into larger networks.

One of the most clever demonstrations of the need for multi-layer networks was
the proof by Minsky and Papert (1969) that a single neural unit cannot compute
some very simple functions of its input. Consider the task of computing elementary
logical functions of two inputs, like AND, OR, and XOR. As a reminder, here are
the truth tables for those functions:

AND OR XOR

x1 x2 y x1 x2 y x1 x2 y

0 0 0 0 0 0 0 0 0
0 1 0 0 1 1 0 1 1
1 0 0 1 0 1 1 0 1
1 1 1 1 1 1 1 1 0

This example was first shown for the perceptron, which is a very simple neuralperceptron

unit that has a binary output and does not have a non-linear activation function. The



Easy to build AND or OR with perceptron
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output y of a perceptron is 0 or 1, and is computed as follows (using the same weight
w, input x, and bias b as in Eq. 7.2):

y =
⇢

0, if w · x+b  0
1, if w · x+b > 0 (7.7)

It’s very easy to build a perceptron that can compute the logical AND and OR
functions of its binary inputs; Fig. 7.4 shows the necessary weights.
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Figure 7.4 The weights w and bias b for perceptrons for computing logical functions. The
inputs are shown as x1 and x2 and the bias as a special node with value +1 which is multiplied
with the bias weight b. (a) logical AND, showing weights w1 = 1 and w2 = 1 and bias weight
b = �1. (b) logical OR, showing weights w1 = 1 and w2 = 1 and bias weight b = 0. These
weights/biases are just one from an infinite number of possible sets of weights and biases that
would implement the functions.

It turns out, however, that it’s not possible to build a perceptron to compute
logical XOR! (It’s worth spending a moment to give it a try!)

The intuition behind this important result relies on understanding that a percep-
tron is a linear classifier. For a two-dimensional input x1 and x2, the perception
equation, w1x1 +w2x2 +b = 0 is the equation of a line. (We can see this by putting
it in the standard linear format: x2 = (�w1/w2)x1 +(�b/w2).) This line acts as a
decision boundary in two-dimensional space in which the output 0 is assigned to alldecision

boundary
inputs lying on one side of the line, and the output 1 to all input points lying on the
other side of the line. If we had more than 2 inputs, the decision boundary becomes
a hyperplane instead of a line, but the idea is the same, separating the space into two
categories.

Fig. 7.5 shows the possible logical inputs (00, 01, 10, and 11) and the line drawn
by one possible set of parameters for an AND and an OR classifier. Notice that there
is simply no way to draw a line that separates the positive cases of XOR (01 and 10)
from the negative cases (00 and 11). We say that XOR is not a linearly separablelinearly

separable
function. Of course we could draw a boundary with a curve, or some other function,
but not a single line.

7.2.1 The solution: neural networks
While the XOR function cannot be calculated by a single perceptron, it can be cal-
culated by a layered network of units. Let’s see an example of how to do this from
Goodfellow et al. (2016) that computes XOR using two layers of ReLU-based units.
Fig. 7.6 shows a figure with the input being processed by two layers of neural units.
The middle layer (called h) has two units, and the output layer (called y) has one
unit. A set of weights and biases are shown for each ReLU that correctly computes
the XOR function.

Let’s walk through what happens with the input x = [0 0]. If we multiply each
input value by the appropriate weight, sum, and then add the bias b, we get the
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It’s very easy to build a perceptron that can compute the logical AND and OR
functions of its binary inputs; Fig. 7.4 shows the necessary weights.
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b = �1. (b) logical OR, showing weights w1 = 1 and w2 = 1 and bias weight b = 0. These
weights/biases are just one from an infinite number of possible sets of weights and biases that
would implement the functions.

It turns out, however, that it’s not possible to build a perceptron to compute
logical XOR! (It’s worth spending a moment to give it a try!)

The intuition behind this important result relies on understanding that a percep-
tron is a linear classifier. For a two-dimensional input x1 and x2, the perception
equation, w1x1 +w2x2 +b = 0 is the equation of a line. (We can see this by putting
it in the standard linear format: x2 = (�w1/w2)x1 +(�b/w2).) This line acts as a
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inputs lying on one side of the line, and the output 1 to all input points lying on the
other side of the line. If we had more than 2 inputs, the decision boundary becomes
a hyperplane instead of a line, but the idea is the same, separating the space into two
categories.

Fig. 7.5 shows the possible logical inputs (00, 01, 10, and 11) and the line drawn
by one possible set of parameters for an AND and an OR classifier. Notice that there
is simply no way to draw a line that separates the positive cases of XOR (01 and 10)
from the negative cases (00 and 11). We say that XOR is not a linearly separablelinearly

separable
function. Of course we could draw a boundary with a curve, or some other function,
but not a single line.

7.2.1 The solution: neural networks
While the XOR function cannot be calculated by a single perceptron, it can be cal-
culated by a layered network of units. Let’s see an example of how to do this from
Goodfellow et al. (2016) that computes XOR using two layers of ReLU-based units.
Fig. 7.6 shows a figure with the input being processed by two layers of neural units.
The middle layer (called h) has two units, and the output layer (called y) has one
unit. A set of weights and biases are shown for each ReLU that correctly computes
the XOR function.

Let’s walk through what happens with the input x = [0 0]. If we multiply each
input value by the appropriate weight, sum, and then add the bias b, we get the
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(a) (b)
Figure 7.3 The tanh and ReLU activation functions.

These activation functions have different properties that make them useful for
different language applications or network architectures. For example, the tanh func-
tion has the nice properties of being smoothly differentiable and mapping outlier
values toward the mean. The rectifier function, on the other hand has nice properties
that result from it being very close to linear. In the sigmoid or tanh functions, very
high values of z result in values of y that are saturated, i.e., extremely close to 1,saturated
and have derivatives very close to 0. Zero derivatives cause problems for learning,
because as we’ll see in Section 7.4, we’ll train networks by propagating an error
signal backwards, multiplying gradients (partial derivatives) from each layer of the
network; gradients that are almost 0 cause the error signal to get smaller and smaller
until it is too small to be used for training, a problem called the vanishing gradientvanishing

gradient
problem. Rectifiers don’t have this problem, since the derivative of ReLU for high
values of z is 1 rather than very close to 0.

7.2 The XOR problem

Early in the history of neural networks it was realized that the power of neural net-
works, as with the real neurons that inspired them, comes from combining these
units into larger networks.

One of the most clever demonstrations of the need for multi-layer networks was
the proof by Minsky and Papert (1969) that a single neural unit cannot compute
some very simple functions of its input. Consider the task of computing elementary
logical functions of two inputs, like AND, OR, and XOR. As a reminder, here are
the truth tables for those functions:

AND OR XOR

x1 x2 y x1 x2 y x1 x2 y

0 0 0 0 0 0 0 0 0
0 1 0 0 1 1 0 1 1
1 0 0 1 0 1 1 0 1
1 1 1 1 1 1 1 1 0

This example was first shown for the perceptron, which is a very simple neuralperceptron

unit that has a binary output and does not have a non-linear activation function. The
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Figure 7.3 The tanh and ReLU activation functions.
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output y of a perceptron is 0 or 1, and is computed as follows (using the same weight
w, input x, and bias b as in Eq. 7.2):

y =
⇢

0, if w · x+b  0
1, if w · x+b > 0 (7.7)

It’s very easy to build a perceptron that can compute the logical AND and OR
functions of its binary inputs; Fig. 7.4 shows the necessary weights.
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It turns out, however, that it’s not possible to build a perceptron to compute
logical XOR! (It’s worth spending a moment to give it a try!)

The intuition behind this important result relies on understanding that a percep-
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inputs lying on one side of the line, and the output 1 to all input points lying on the
other side of the line. If we had more than 2 inputs, the decision boundary becomes
a hyperplane instead of a line, but the idea is the same, separating the space into two
categories.

Fig. 7.5 shows the possible logical inputs (00, 01, 10, and 11) and the line drawn
by one possible set of parameters for an AND and an OR classifier. Notice that there
is simply no way to draw a line that separates the positive cases of XOR (01 and 10)
from the negative cases (00 and 11). We say that XOR is not a linearly separablelinearly

separable
function. Of course we could draw a boundary with a curve, or some other function,
but not a single line.

7.2.1 The solution: neural networks
While the XOR function cannot be calculated by a single perceptron, it can be cal-
culated by a layered network of units. Let’s see an example of how to do this from
Goodfellow et al. (2016) that computes XOR using two layers of ReLU-based units.
Fig. 7.6 shows a figure with the input being processed by two layers of neural units.
The middle layer (called h) has two units, and the output layer (called y) has one
unit. A set of weights and biases are shown for each ReLU that correctly computes
the XOR function.

Let’s walk through what happens with the input x = [0 0]. If we multiply each
input value by the appropriate weight, sum, and then add the bias b, we get the



Is it possible to capture XOR with perceptrons?

qPause the lecture and try for yourself!
qNo!
qWhy? Perceptrons are linear classifiers
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XOR is not a linearly separable function!



Solution to the XOR problem

qXOR can't be calculated by a single perceptron
qXOR can be calculated by a layered network of units. 
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Figure 7.3 The tanh and ReLU activation functions.

These activation functions have different properties that make them useful for
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Early in the history of neural networks it was realized that the power of neural net-
works, as with the real neurons that inspired them, comes from combining these
units into larger networks.

One of the most clever demonstrations of the need for multi-layer networks was
the proof by Minsky and Papert (1969) that a single neural unit cannot compute
some very simple functions of its input. Consider the task of computing elementary
logical functions of two inputs, like AND, OR, and XOR. As a reminder, here are
the truth tables for those functions:
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The hidden representation h
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(With learning:  hidden layers will learn to form useful representations)



Shallow Neural Network with Hidden Units

<latexit sha1_base64="4mwMW+AxXHfhTyI/kaVAw9s5G24="></latexit>

y = �0 + �1h1 + �2h2 + �3h3

Break down into two parts:

where:

Hidden units

<latexit sha1_base64="OexYJKlfph/YpHs7sx68KlEAH9c="></latexit>

h1 = a[✓10 + ✓11x]

h2 = a[✓20 + ✓21x]

h3 = a[✓30 + ✓31x]

<latexit sha1_base64="cYzac95S8rmoV6yZxLSHjL3VtpU="></latexit>

y = �0 + �1a[✓10 + ✓11x] + �2a[✓20 + ✓21x] + �3a[✓30 + ✓31x].



Visualize shallow neural network

1. Compute the linear function



Visualize shallow neural network

2. Pass through Relu (create hidden units)

<latexit sha1_base64="6yInH/eKr6BVR1p+osf4KbjHrPs="></latexit>

h1 = a[✓10 + ✓11x]

h2 = a[✓20 + ✓21x]

h3 = a[✓30 + ✓31x],



Visualize shallow neural network

3. Weight the hidden units



Visualize shallow neural network

4. Sum the weighted hidden units <latexit sha1_base64="4mwMW+AxXHfhTyI/kaVAw9s5G24="></latexit>

y = �0 + �1h1 + �2h2 + �3h3



Visualize shallow neural network

<latexit sha1_base64="cYzac95S8rmoV6yZxLSHjL3VtpU="></latexit>

y = �0 + �1a[✓10 + ✓11x] + �2a[✓20 + ✓21x] + �3a[✓30 + ✓31x].

Example shallow network = piecewise linear functions
1 “joint” per ReLU function



Depicting shallow neural networks

<latexit sha1_base64="4mwMW+AxXHfhTyI/kaVAw9s5G24=">AAAWsniclZhbb9s2FIDV7tZ1t3TD8rIXYUGBYesMu+26vQxok6a3pIvTxEmaODUomZLZUJSiS2JX8D/Zr9nr9gf2b3YoyWZ1DvMwA4np833i5ZDUzUukyPJu999r1z/48KOPP7nx6c3PPv/iy69Wbn19kMVF6vOBH8s4PfJYxqVQfJCLXPKjJOUs8iQ/9M42ND+84GkmYrWfzxJ+GrFQiUD4LIfQaOXBzP3dHSYTMSq785/qQm8+0f+aX3f1r7uLX/f0r3vz0cpat9OtPi4t9JrCmtN8+qNb346H49gvIq5yX7IsO+l1k/y0ZGkufMnnN4dFxhPmn7GQn0BRsYhnp2U1wLl7GyJjN4hT+FO5W0XfP6JkUZbNIg/MiOWTDDMdtLGTIg9+Oy2FSoqcK79uKCikm8euzpY7Fin3czmDAvNTAX11/QlLmZ9DTm8OFb/04yhialwO1zd35+XQ46FQJT8vqvzO521ns3I4FK8y1p/vL2sROY/EO04qqRRdyRUCD+dlyTthBwPBAYgOJyBWPIM6dX68wO0hCutJAgbuxVPoXOC+mpOqVc5DyElLOyYaFBLJpy1rg1gwlVFL2QPFdW+7GvA8hVmArsIXR3OwlzA1XxyX82meRmWmY7iFlKmQV03AkH0m9YjahiqkhEP9lvUHtl4xddYkLk6qrqY6gqz9tO3kKc2LGredKoIsWIRh26oiyJKw+8csYpDlpjyCAUeujthVobAqyMLsp7HXbjvREbw2pwnsl7a3WZL0XzCUER2A3ae/BVM+b+sb8dJ2F8m5qHxd4FN3ApPVPoSlYT2sRSMwqiY2p2aVK2TSbEEojS/bpu6NReWJaA9QB/CmK1Khgve0O1UJlqwOD+/AUNNC8pOfO7/w6WnZ1dtG/yPZhIqyIrFVpMP/o6IxXG/w+oIInrxYosmDQDV5sYTzO5o6luKFrSPV3EFBKCZFPkPbX4SqfUwVwZ2NI9RXCOh64ZsJhSY5CNqyDmgZvuHKaVlAPhqkX4/Rl3FWpJyc/NB6hkil69NiKvTFqn1ClVponze4XB4FZbg4XPArDvdQRr06n15cqDFLUTKnekqnb4ZZDlvMtvurKa+LVivk51tNe9AvmJ3C9/n5aAvPR0gs6khUF9yqWOuSxLK0B3Utl+v7PSu33vxIlnZoce2mJPU2vbTbFveKHvDzbUtvt4lHLOpIVFfTQ+oRy9Ie1GXP47ZtFBbXbkpS7yKPVtviLk20/IP9Cc+Zvk2K5Vjf9sVyWIewmFMxt4pxxEMk1iEsRkXbgt9Y2RNw8WhbdQiL/Uy0NR3A0phLPIQ6hMV6C7fNJobVbYu6bVeZTCbIrENYfMoiPOo6hMWQiqFVPGNJgsQ6RPI4wXmc0DwmWEpsEp6RxDIjZEnZFlQ6iduSDmBpilqbWhqDHshYoQabIJYzuvIy68pTaBUruooHtoYHVzScM1ShDmBph+wxd7hj3WQeTjHcZtmSnAhkJTSBfez0qbO4+/OCktzJecHM0Bmll4ZeUnpo6CGlqaHkicALXhlKnk684MLQC0oPDD2gtDC0oHRg6IDSwNCA0ieGPqHUN9SndMPQDUpzQ8kdKVwRDN2ndGLohNIjQ48ofW3oa0qfGfqM0mNDjyl9Z+g7Sh8Z+ohSZiijdNPQTUq5oeTVgResG7pOqWcoefaDvWZon9LE0ITSx4Y+pnRsKHkqhuuZoeT2Bi6MhkpKnxv6nFJhKHl+84KXhr6kNDI0ovSFoS8ofWvoW0qfGvqU0tBQ8m4A7k4M3aPUvAUqM0p3Dd2l9NzQc/t7Ab6cRs+2MHdMBTuUxobGlG4ZSp4U4FbC0DNyPxmo5qy2eNtEzmuBWnILazK+OJrkPFBLbmHN2WlxNDk/BWrJJ6TrmwfLFymQUjjTj1bWevgtLC0c3O30HnTu795fe7jevKG94XznfO/84PScX52HzjOn7wwc3/nT+cv52/ln9f7q8Spb9Wv1+rXmmG+c1mdV/ge0FuRK</latexit>

y = �0 + �1h1 + �2h2 + �3h3

<latexit sha1_base64="OexYJKlfph/YpHs7sx68KlEAH9c="></latexit>

h1 = a[✓10 + ✓11x]

h2 = a[✓20 + ✓21x]

h3 = a[✓30 + ✓31x]

Each parameter multiplies its source and adds to its target



With enough hidden units

q… we can describe any 1D function to arbitrary accuracy



Universal approximation theorem

“a formal proof that, with enough hidden units, a shallow 
neural network can describe any continuous function on a 

compact subset of        to arbitrary precision”
<latexit sha1_base64="K4U1ZHkglIR02KHQbhLTcSGE2II="></latexit>

RD



Universal approximation theorem

Cybenko, George. "Approximation by superpositions of a sigmoidal 
function." Mathematics of control, signals and systems 2.4 (1989): 303-314.

<latexit sha1_base64="K4U1ZHkglIR02KHQbhLTcSGE2II="></latexit>

RD



Terminology

• Y-offsets = biases
• Slopes = weights
• Everything in one layer connected to everything in the next 

= fully connected network 
• No loops = feedforward network
• Values after ReLU (activation functions) = activations
• Values before ReLU = pre-activations
• One hidden layer = shallow neural network
• More than one hidden layer = deep neural network
• Number of hidden units ≈ capacity



Deep Neural Network



Shallow network

q1 input, 4 hidden units, 2 outputs

<latexit sha1_base64="R8vqOAXY+V+odbvKA1u5ta3TLRI="></latexit>

h1 = a[✓10 + ✓11x]

h2 = a[✓20 + ✓21x]

h3 = a[✓30 + ✓31x]

h4 = a[✓40 + ✓41x]



Network as composing function

<latexit sha1_base64="eo6xbZtUDEx9RMeyKb8msDGOEPA="></latexit>

h0
1 = a[ 10 +  11h1 +  12h2 +  13h3]

h0
2 = a[ 20 +  21h1 +  22h2 +  23h3]

h0
3 = a[ 30 +  31h1 +  32h2 +  33h3]

<latexit sha1_base64="R8vqOAXY+V+odbvKA1u5ta3TLRI="></latexit>

h1 = a[✓10 + ✓11x]

h2 = a[✓20 + ✓21x]

h3 = a[✓30 + ✓31x]

h4 = a[✓40 + ✓41x]



Example of Multi Layer Perceptron (MLP)
Bias 

vector

Weight 
matrix



Shallow vs deep networks

qThe best results are created by deep networks with many 
layers. 
q50-1000 layers for most applications
qBest results in 

qComputer vision
qNatural language processing
qGraph neural networks
qGenerative models
qReinforcement learning

qAbility to approximate different functions?
qBoth obey the universal approximation theorem.
qArgument:  One layer is enough, and for deep networks could 

arrange for the other layers to compute the identity function.

All use deep networks.  
But why?



Shallow vs deep networks

qNumber of linear regions per parameter
qDeep networks create many more regions per parameters

5 layers
10 hidden units per 

layer
471 parameters

161,501 linear regions

5 layers
50 hidden units per 

layer
10,801 parameters

>10!" linear regions



Shallow vs deep networks

qFitting and generalization



Implicit Neural Field
(An example of multi layer perceptron)



Neural network as function estimation

q… we can describe any 1D function to arbitrary accuracy



What are neural fields?

Magnetic Field

Φ : ℝ2 → ℝ2

(x,y)

Eulerian Flow Field of aFluid
[Koldora CC]

Neural Network (Φ)

Neural Network (Φ)

Φ : ℝ2 → ℝ2

(x,y)



What are neural fields?

Φ : ℝ2 → ℝ2

(x,y)

Neural Network (Φ)

Neural Network (Φ)

Φ : ℝ2 → ℝ2

(x,y)

GeospatialData
[Blumenstock et al. 2015]

SignedDistanceFunction (SDF)



Image as function



Neural fields

qNeRF (Neural Radiance Field) has revolutionalized
Computer Vision & Graphics in past 2 years!

Google maps immersive view



Representation for 3D deep learning

Voxel Points Meshes



Voxel representation

qMemory expensive, computationally expensive (N3)



Mesh representation

qFixed topology
qDiscrete vertices and connections



Point cloud representation

qDoes not define a surface
qNot suitable for visualization, texturing, etc.



Signed Distance Function (SDF)

qSDF(X) = 0, when X is on the surface.
qSDF(X) > 0, when X is outside the surface
qSDF(X) < 0, when X is inside the surface
qDeep SDF: Use a neural network (co-ordinate based MLP) to 

represent the SDF function.
Park, Jeong Joon, et al. "Deepsdf: Learning continuous signed distance 
functions for shape representation." CVPR. 2019.



Surface as decision boundary



Regression of continuous SDF

qMulti layer preception maps a point (X,Y,Z) to SDF value

MLP



SDF



Loss



Training Perceptron - First Attempt

classification error counts
since both  yi , u ϵ {0,1}

total loss

Consider perceptron:

perceptron’s prediction
on example xi

homogeneous representation of x

vector representation of w

single example loss

prediction on example xi

Classification error loss:
Iverson 
brackets



extreme case of (so-called) vanishing gradients

Zero Gradients Problem

“error count” loss function cannot be optimized via gradient descent

W

L(W)

W*

(optimal weights)

NOTE: in this case gradient  is always either zero or does not exist

error count loss

Classification error loss function L(W) is piecewise constant:



Perceptron:

Work-around for Zero Gradients

1

0
t

u(t) - unit step function
(a.k.a. Heaviside function)

Ϭ(t) - sigmoid function

approximate decision function u using its softer version (relaxation) 

Ϭ(t) ≈ u(t)



Work-around for Zero Gradients

1

0
t

u(t) - unit step function
(a.k.a. Heaviside function)

Ϭ(t) - sigmoid function

Relaxed predictions are often interpreted as prediction “probabilities”

1-Ϭ(t)

Perceptron:
approximate decision function u using its softer version (relaxation) 

Ϭ(t) ≈ u(t)



Training Perceptron - Second Attempt

Perceptron approximation:

relaxed decision function (sigmoid)
never returns exactly 0 or 1

1

0

Ϭ(t)

now makes no sense at all
Classification error loss:

NOTE: 
To be able to use 

gradient descent we 
need to “soften” both 
the decision function 
and the loss function



Quadratic Loss

Perceptron approximation:

1

0

Consider quadratic loss:

Ϭ(t)NOTE:
Loss      
is now differentiable   
with respect to      
because               is
differentiable w.r.t. 



1

0

Quadratic Loss

Perceptron approximation:

Consider quadratic loss:

misclassified example

Ϭ(t)



1

0

Quadratic Loss

Perceptron approximation:

Consider quadratic loss:

another misclassified example

Ϭ(t)



1

0

Quadratic Loss

Perceptron approximation:

Consider quadratic loss:

correctly classified examples

Ϭ(t)

NOTE: 
loss function encourages  W  s.t.
correctly classified points are moved
further from the decision boundary, 
i.e.                     and                    .



Quadratic Loss

Perceptron approximation:

Consider quadratic loss:

Sum of Squared Differences 
(SSD)

Total loss

approximation for 
perceptron’s prediction

on example xi



(binary case)

Cross-Entropy Loss (related to logistic regression loss)

Perceptron approximation:

Distance between two distributions can be evaluated via cross-entropy
(equivalent to KL divergence for fixed target)

From the last (optional) part of topic 9B:

Consider two probability distributions  
over two classes (e.g. bass or salmon) :                      and

salmonbass



Perceptron approximation:

Consider two probability distributions  
over two classes (e.g. bass or salmon) :                      and

(binary) 
Cross-entropy loss:

salmonbass

(binary case)

Cross-Entropy Loss (related to logistic regression loss)

Distance between two distributions can be evaluated via cross-entropy
(equivalent to KL divergence for fixed target)



Perceptron approximation:

Consider two probability distributions  
over two classes (e.g. bass or salmon) :                      and

(binary) 
Cross-entropy loss:

Each data label  y provides “deterministic” distribution                 that is 
either (1,0) or (0,1). This implies an equivalent alternative expression:

salmonbass

(binary case)

Cross-Entropy Loss (related to logistic regression loss)



Perceptron approximation:

Consider two probability distributions  
over two classes (e.g. bass or salmon) :                      and

sum of Negative Log-Likelihoods  (NLL)

Total loss:

salmonbass

(binary case)

Cross-Entropy Loss (related to logistic regression loss)



+

w1

w2

w3

w4

wm

… weighted
sum

x2

x4

…

xm

x1

x3

binary
decision

label

Towards Multi-label Classification

Remember:        basic perceptron

W

binary classification

u(wTx)



w1

w2

w3

w4

wm

… weighted
sum

x2

x4

…

xm

x1

x3

binary
decision

Ϭ(wTx)
Towards Multi-label Classification

binary classification

Remember: “relaxed” perceptron

+ probability
W

salmonbass

not bass

distribution
(Ϭ, 1-Ϭ)



Towards Multi-label Classification

x2

x4

…

xm

x1

x3

multi-label classification

use K linear transforms Wk and sigmoids 

+

+

+

W1

W2

W3

“probability”
of class 1

“probability”
of class 2 

“probability”
of class 3

Ϭ(wTx)

Such “probability scores” Ϭ1, Ϭ2, …, ϬK over K classes do not add up to 1

This is used formutually non-exclusive categories



Common Approach: Soft-Max

x2

x4

…

xm

x1

x3

multi-label classification

use K linear transforms Wk and soft-max

+

+

+

W1

W2

W3

probability
distribution

salmonbass sturgeon

Notation: K rows of matrix W are vectors Wk so that vector WX has elements 

Ϭ

This is used for
mutually exclusive 

categories
(only one can be true)

some form of
normalization
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softmax

Soft-Max Function
Example:

Soft-max normalizes logits vector  a converting it to distribution over classes

softmax…
…



softmax

Soft-Max Function

… softmax …

NN Example:

salmonbass sturgeon

…
…

Soft-max normalizes logits vector  a converting it to distribution over classes



Soft-Max Function

… softmax …

NN Example:

salmonbass sturgeon

NOTE: 
soft-max generalizes sigmoid 

to multi-class predictions. Indeed, 
consider binary perceptron with scalar 
linear discriminator W TX  (e.g. for class 1)

sigmoid

class 1 output of soft-max for
a combination of two linear predictors:
½W TX for class 1 and - ½W TX for class ¬1 (class 0) 

Soft-max normalizes logits vector  a converting it to distribution over classes



Consider two probability distributions  
over K classes (e.g. bass, salmon, sturgeon) :            and

K-label perceptron’s output:                       for example

sum of Negative Log-Likelihoods  (NLL)

salmonbass sturgeon

Multi-valued label              gives one-hot distribution   

k-th
index

Total loss:
cross entropy

(general multi-class case)

Cross-Entropy Loss



Define K linear transforms, from features X  to K “logits”  
for  k = 1, 2, … K

R1
R2

R3

soft-max vs arg-max
Multi-label (linear) Classification

• arg-max assigns X  to class  k corresponding to the largest logit

• Let Rk be decision region for class k
all points X assigned to class k by arg-max

soft-max                      softens 
hard arg-max predictions 
similarly to how sigmoid 
softens unit-step function



Summary

qShallow neural network
qUniversal function approximation theorem
qDeep neural network

qMulti layer perceptron
qAn example: Implicit neural filed for shape representation

qLoss
qSigmoid, Softmax
qCross entropy loss, quadratic loss

Next

qHow to train neural networks?


