UCMERCED

EECS 230 Deep Learning
Lecture 3: Neural Network

Some slides from Simon Prince, Dan Jurafsky, Roni Sengupta, and Olga Veksler

N,

JCMERCED

Shallow Neural Network

From last lecture: 1D Linear regression

dModel: -
Loss, L = 0.19
y = flz, @]
= ¢o + 1T
JdParameters

¢1 <+«—— slope

¢ _ [¢0] «— y-offset

From last lecture: Linear Classification

dFor example: fish classification - salmon or sea bass?
extract two features, fish length and fish brightness

feature - =, individual
vector - & features X,
' ' ' e.g. fish length
(= and brightness
———— (- »

salmon sea bass salmon sea bass

y'=0 y2=1 y3=0 y4=1

dy' is the output (label or target) for example x’

Linear Classification (perceptron)

dFor two class problem and 2-dimensional data (feature vectors)

, -
4 “good”
X2 linear transformation ,_@ label
o from 2D space to 1D
o L good
o WoTWiXTW3X, = (separation
o o by simple
° ; threshold
o ®] :.
oeW0o + WiX] J;W2X2.< 0 :." @ label
o) ~: """""
v
thresholding f(W,X) = y (W0+W1X1+W2X2) f(W,X) € {0,
can be formally
represented by this 1 u(r) . ,
prediction function 0 unit step functlon. u(t)
» ¢ (a.k.a. Heaviside function)

Neural Unit

* Take weighted sum of inputs, plus a bias

z:b+§:Mﬂ
i

Z=w-X+b

* Instead of just using z, we'll apply a nonlinear
activation function f:

y=a= f(z)

Non-linear Activation Function

/
Sigmoid Jy=1/(1+e) /
1 Y /
— G(Z) — 0.4f /
Y l+e¢ /

Final function the unit is computing

o(w-x+b)

Y " Trexp(—(w-x+b))

Neural Unit

Output value y

Non-linear activation function

Weighted sum

Weights w,
Input layer x;

An example

Suppose a unit has:

w= [0.2,0.3,0.9]
b= 0.5

What happens with input x:
x = [0.5,0.6,0.1]

1
y:G(W'X—|—b) — 14 e~ (wx+D)
| 1

14+ ¢~ (:3%.2+4.6%.34+.1%.9+.5) 1+ e—0.87

= .70

tanh(z)

y

Other non-linear activation function

Most Common:

1.0 10
=z
0.5 y:e . 5 y:de(Z,O)
eZ _|_ e_Z -
0.0 % 0
i
—0.5) -5
1.015 _5 0 5 10 ~10r9 —5 0 5 10

Rectified Linegr Unit

Perceptron

* A very simple neural unit
e Binary output (Oor 1)
 No non-linear activation function

0, tw-x+b<0

YTV 1, ifwox+bh>0

Perceptron from the 50’s and 60’s

https://www.youtube.com/watch?v=cNxadbrN al&t=71s

https://www.youtube.com/watch?v=cNxadbrN_aI&t=71s

The XOR problem

Minsky and Papert (1969)

(JCan perceptron compute simple functions of input?

AND OR XOR
x1 x2 |y x1l x2|y xl x2 1|y
O 0 |0 O 0 |0 ® 0 |0
® 1 |0® O 1 |1 ® 1 |1
1 0 |0 1 0 |1 1 0 |1
1 1 |1 1 1 |1 1 1 |0

Easy to build AND or OR with perceptron

0, fw-x+b6<0
YTV 1, ifwox+b>0

X1
\1
Xz_—IEEEK:>
-1 AND
_|_1/ x1 x2|y
®O 0 (0
© 1 |0
AND 1 0 |0
1 1 |1

s it possible to capture XOR with perceptrons?

(dPause the lecture and try for yourself!

dNo!
JWhy? Perceptrons are linear classifiers

Decision boundaries

X2, *24 *2,
NORNE O I O 1@ O
0 O O—s . 0 O— @ 0 O P
Xl N N Xl
0 1 0 1 0 1
a) Xl AND X2 b) Xl OR Xz C) Xl XOR Xz

XOR is not a linearly separable function!

!
X1

Solution to the XOR problem

(IXOR can't be calculated by a single perceptron

(IXOR can be calculated by a layered network of units.

XOR RelU /@

x1 x2|y 1 -2

6 0 [0 pew /@

o 1 |1 T

1 0 |1 I 11\

1 1|0 - N AN

The hidden representation h

ST
X1 X2
I @ O I o .77
0 O O—», 0 O SEAEP -
1 - h
0 1 0 .- 1 2 1
a) The original x space b) The new (linearly separable) 4 space

(With learning: hidden layers will learn to form useful representation

Shallow Neural Network with Hidden Units

Yy = ¢o + P1al010 + 0112] + P2alla0 + O212] + P3alf30 + O312].

Break down into two parts:

Y = Qo + ¢1h1 + Pp2ho + @3hs

where:

hl — 3:6)10 -+ 81156:

Hidden units -~ h2 = alflo + 021
hg — a:ego + 931213:

Visualize shallow neural network

1. Compute the linear function

<4=J
5
49-00'/ J
-]
O

010 + 0112 0o + 621 O30 + 031

Visualize shallow neural network 71 = alfio + 011z
ho = a0 + 0212
2. Pass through Relu (create hidden units) p, = alf30 + 0312
), b) <)
%oo-/ |
O
10 010 + 011> 020 + 0217
-O.O....1.IO....2.OO.O....1.IO....
d)1.0 e)
4§-0-0 / |
O
Lol P =albo +0nz] 2 = alf0 + 2]
0.0 1.0 2.00.0 1.0

Visualize shallow neural network

3. Weight the hidden units

e)

hy = a[910 + 911,1‘]

hg = a[ego + 921213]

hs = a[930 -+ 93126]

Visualize shallow neural network

4. Sum the weighted hidden units

Yy = ¢o + p1h1 + ¢2ha + P3hs
8) h) 1)
1.0
S -\\\\-~_--
800]]
-}
@) -___—‘\\\\\\\\\\\\
. 11 @2hs ¢3hs
o0 10 2000 10 2000 10 20
Input,) nput, =
hD
D
Eﬂﬂ-
5
@)
. b0+ P1h1+Po2ho+p3hs
0.0 1.0

2.0
Input, x

Visualize shallow neural network

Yy = ¢o + p1a|010 + O112] + P2a|f0 + O212] + P3alfsp + O317].

b)

c)

Example shallow network = piecewise linear functio

1 “joint” per RelLU function

Depicting shallow neural networks

hi1 = a|f10 + 01:17]
ho = allsg + 0217 Y = ¢o + @1h1 + @aho + @3hs
hg — 3:930 -+ 93133:

Each parameter multiplies its source and adds to it E\ﬁ
UCMERCED

With enough hidden units

... we can describe any 1D function to arbitrary accuracy

b) c)
1.0 :
5 linear regions ~~| 110 linear regions 20 linear regions
;} \“\ Illl
-IJ ‘\‘ III
2.0.0 A
+ N "
> \ /7
O) lll
0.0 1.0 2.00.0 1.0 2.00.0 1.0 2.0
Input, = Input, = Input,

Universal approximation theorem

“a formal proof that, with enough hidden units, a shallow
neural network can describe any continuous function on a
compact subset of pl to arbitrary precision”

Universal approximation theorem

Approximation by Superpositions of a Sigmoidal Function*

G. Cybenkot

Abstract. In this paper we demonstrate that finite linear combinations of com-
positions of a fixed, univariate function and a set of affine functionals can uniformly
approximate any continuous function of n real variables with support in the unit
hypercube; only mild conditions are imposed on the univariate function. Our
results settle an open question about representability in the class of single hidden
layer neural networks. In particular, we show that arbitrary decision regions can
be arbitrarily well approximated by continuous feedforward neural networks with
only a single internal, hidden layer and any continuous sigmoidal nonlinearity. The
paper discusses approximation properties of other possible types of nonlinearities
that might be implemented by artificial neural networks.

Key words. Neural networks, Approximation, Completeness.

Cybenko, George. "Approximation by superpositions of a sigmoidal
function." Mathematics of control, signals and systems 2.4 (1989): 3034314.

TerminOIOgy Hidden layer

Input layer Output layer

. Weight or Neuron or
* Y-offsets = biases parameter hidden unit
* Slopes = weights

* Everything in one layer connected to everything in the next
= fully connected network

* Noloops = feedforward network

 Values after RelLU (activation functions) = activations

 Values before RelLU = pre-activations

* One hidden layer = shallow neural network

* More than one hidden layer = deep neural network

* Number of hidden units =~ capacity

N,

JCMERCED

Deep Neural Network

Shallow network

1 input, 4 hidden units, 2 outputs

h1 = alfig + 011 7]
ho = alfag + 021 7]
hs = alf3g + 0317]
hy = alfs0 + 011 2]

Network as composing function

S A

:(91() + 6’11%:
020 + 01 7]
030 + 0312

040 + 0417]

10 + Y11h1 4+ Y12ho + Yi3hs)
20 + Ya1h1 + Yashs + Washs

30 + Ps1h1 4+ Y3ghg + Y3shs)

Example of Multi Layer Perceptron (MLP)

Bias
vector

Weight
matrix

Hidden Hidden Hidden
layer, h; layer, ho layer, hs
D; = D, =14 Dy =2 D; =3

Input, x

Shallow vs deep networks

dThe best results are created by deep networks with many
layers.

50-1000 layers for most applications

Best results in]
1 Computer vision
 Natural language processing All use deep networks.
Q Graph neural networks But why?
U Generative models
 Reinforcement learning

—

JAbility to approximate different functions?
(JBoth obey the universal approximation theorem.

JArgument: One layer is enough, and for deep networks could
arrange for the other layers to compute the identity functiont

Shallow vs deep networks

INumber of linear regions per parameter
Deep networks create many more regions per parameters

a) ; Input dimension D; =1
10 =T
n
c
.9
Q0
) 10 -
[T
S)
| .
2 10’
£
S
=

o 500
Number of parameters

5 layers
10 hidden units per
layer
471 parameters
161,501 linear regions

" 1000

(o

~—
(4
o

Input dimension D; = 10

Number of regions

o 10000 " 20000

Number of parameters

5 layers

50 hidden units per
layer

10,801 parameters

>104° linear regi

Shallow vs deep networks

Fitting and generalization

Figure 20.2 MNIST-1D training. Four 1007 T hidden layer

fully connected networks were fit to 4000 I 2 hidden layers
MNIST-1D examples with random labels - 3 ::gg:: ::z:::
using full batch gradient descent, He ini-

tialization, no momentum or regulariza-
tion, and learning rate 0.0025. Mod-
els with 1,2,3,4 layers had 298, 100, 75,
and 63 hidden units per layer and 15208,
15210, 15235, and 15139 parameters, re-
spectively. All models train successfully, 0 ') Epo C-h ' 500K
but deeper models require fewer epochs. P

% Train error

o

N,

JCMERCED

Implicit Neural Field
(An example of multi layer perceptron)

Neural network as function estimation

... we can describe any 1D function to arbitrary accuracy

a) b) c)
1.0 - . . . - -

5 linear regions ~~] 110 linear regions 20 linear regions
;} \“\ Illl
-IJ ‘\‘ III
2.0.0
+ N "
> \ /7
@) \ 7

0.0 1.0 2.00.0 1.0 2.00.0 1.0 2.0
Input, = Input, = Input,

What are neural fields?

(X,y)

A A4 R NN A

v

4

.

4

4

4
A
>
L
A

»

\
L)

:

:

" Magnetic Field

~~~~~~
/////////

..........

[xy)

....................

,,,,,,,,

.......

v

oo ST A TR P B B IR |

Neural Network (o)

......

Eulerian Flow Field
[Koldora CC]

T




What are neural fields?

xy)

v

[xy) —

v

Neural Network (o)




Image as function




Neural fields

(INeRF (Neural Radiance Field) has revolutionalized
Computer V|S|on & Graphlcs In past 2 yearsI

e il P

Google maps immersive view



Representation for 3D deep learning

Voxel Points Meshes




Voxel representation

dMemory expensive, computationally expensive (N3)

1283




Mesh representation

JFixed topology

Discrete vertices and connections




Point cloud representation

dDoes not define a surface

Not suitable for visualization, texturing, etc.




Signed Distance Function (SDF)

59 Decision
—— boundary
e ofimplict

° surface

> .
e SDF >0
..

. o
@ SDF <0

{c}

ASDF(X) = 0, when X is on the surface.
ASDF(X) > 0, when X is outside the surface
ASDF(X) < 0, when Xis inside the surface

(Deep SDF: Use a neural network (co-ordinate based MLP) t
represent the SDF function.

Park, Jeong Joon, et al. "Deepsdf: Learning continuous signed distance
functions for shape representation." CVPR. 2019.




Surface as decision boundary




Regression of continuous SDF

dMulti layer preception maps a point (X,Y,Z) to SDF value

: \ (x,y,2) { ] SDF




SDF

Instance-specific SDFs

1
X€R3I fg B s<eR
L]

fo:R* =R

Signed Distance Field (for a single instance):
(position) — (distance)

if 6 layer network with 1000-dim feature space, about 6M parameters per instance!




N,

JCMERCED

L.oss



Training Perceptron - First Attempt

single example loss

W — arg min Z L(yij[f(w,xi)})

prediction on example x!

\ 1Etrain
J
|

L(w)

total loss

vector representation of w

Consider perceptron:  f(w,x) = u(W7TX) WT = [wo, Wi, ..., W]

T
X' =[1,X1,X9, .y X ]
Iverson
brackets

Classification error loss: L(y,f) = |y # f]

homogeneous representation of x

perceptron’s prediction
on example x'

= LW) = Y [y AW’ X’
\iEtrain |
|

classification error counts
since both y', u € {0,1}




extreme case of (so-called) vanishing gradients

Zero Gradients Problem

Classification error loss function L(W) 1s piecewise constant:

+ L(W) error count loss

——
1

l - > W
W
(optimal weights)

NOTE: 1n this case gradient VL 1is always either zero or does not exist

“error count” loss function cannot be optimized via gradient descent



Work-around for Zero Gradients

Perceptron: f(w,x") = u(W'X") ~ o(W'X")
approximate decision function u using its softer version (relaxation)

R u(t) - unit step function
1 (a.k.a. Heaviside function)

O(7) = u(t
(?) (7) 6(?) - sigmoid function

1
t t) =
: S A =y




Work-around for Zero Gradients

Perceptron: f(w,x") = u(W'X") ~ o(W'X")
approximate decision function u using its softer version (relaxation)

R u(t) - unit step function

1 (a.k.a. Heaviside function)
=01, A=y 6(?) - sigmoid function
1
’ o(t) :=
’ g (t) 1 4 exp(—t)

Relaxed predictions are often interpreted as prediction “probabilities”
Pr(x' € Classl | W) = o(W'X?Y)
Pr(x' € Class0 | W) 1 —o(WhX") = o(-W'X")



Training Perceptron - Second Attempt

Perceptron approximation: f(w,xi) = u(WTXi) ~ U(WTXi)

y € 10,1}
o
Classification error loss: Ly, a)=1y % 0]

now makes no sense at all

relaxed decision function (sigmoid)
never returns exactly 0 or 1

NOTE: A 6(f)

To be able to use
gradient descent we
need to “soften’ both 0
the decision function
and the loss function o (1) 1




Quadratic Loss

Perceptron approximation: f(w,xi) = u(WTXi) ~ U(WTXi)

y € {0, 1}
. . ' 2
Cons1diladratlc loss: L(y,o0) = (y — o)
NOTE: r B0
Loss L(y,c(W' X)) !
1S now differentiable
with respect to W 0 ‘
because L(y,o) is i
differentiable w.r.t. O




Quadratic Loss

Perceptron approximation: f(w,xi) = u(WTXi) ~ U(WTXi)

y €{0,1}
. : l 2
Consider quadratic loss: L(y,o0) = (y — o)

misclassified example



Quadratic Loss

Perceptron approximation: f(w,x") = w(W'X") ~
y € {0,1}
|

Consider quadratic loss: L(y,0) = (y —0)?
A 6(t)

(y) = o(W'X7))

[y

0

v

WTXx7 <0
y’ =1

another misclassified example

oW X"



Quadratic Loss

Perceptron approximation: f(w,xi) = u(WTXi) ~ U(WTXi)

y €{0,1}
. : l 2
Consider quadratic loss: L(y,o0) = (y — o)

(y) = o(W'X7))

NOTE:

loss function encourages W s.t. . .
correctly classified points are moved WTX J WTX ’
further from the decision boundary, yj — () yz — 1

re. W'Xx'>0 and W'X’ <o. -
correctly classified examples



Quadratic Loss

Perceptron approximation: f(w,xi) = u(WTXi) ~ J(WTXi)

Consider quadratic loss: L(y,o) = (y —0)?

approximation for
perceptron’s prediction
on example x'

Total loss = L(W) = Z (yi—[cf(WTij)2

1E€train
{ ]

|

Sum of Squared Differences
(SSD)




(binary case)

Cross-Entro PY LOSS (related to logistic regression loss)

Perceptron approximation: f(w,xi) = u(WTXi) ~ J(WTXi)

Consider two probability distributions
over two classes (e.g. bass or salmon) :  (y,1—y) and (o,1—0)

bass salmon ‘

Pr(x' € Classl |W) = o(W'X")
Pr(x" € Class0 | W)

1 —o(W'X")

Distance between two distributions can be evaluated via cross-entropy
(equivalent to KL divergence for fixed target)

From the last (optional) part of topic 9B: H (pa q ) = E Pk In qk
k




(binary case)

Cross-Entro PY LOSS (related to logistic regression loss)

Perceptron approximation: f(w,xi) = u(WTXi) ~ J(WTXi)

Consider two probability distributions
over two classes (e.g. bass or salmon) :  (y,1—y) and (o,1—0)

bass salmon

(binary)
Cross-entropy loss: | L(y,0) = —-ylno - (1-—y)ln(l-— o)

Distance between two distributions can be evaluated via cross-entropy
(equivalent to KL divergence for fixed target)
H(p,q) :=— > pr Ing
k




(binary case)

Cross-Entro PY LOSS (related to logistic regression loss)

Perceptron approximation: f(w,xi) = u(WTXi) ~ J(WTXi)

Consider two probability distributions
over two classes (e.g. bass or salmon) :  (y,1—y) and (o,1—0)

bass salmon

(binary)
Cross-entropy loss: | L(y,0) = —-ylno - (1-—y)ln(l-— o)

Each data label y provides “deterministic” distribution (y,1 —y) thatis
either (1,0) or (0,1). This implies an equivalent alternative expression:

B —Ino ify=1
Liy,o) = { —In(1—-0) ify=0




(binary case)

Cross-Entro PY LOSS (related to logistic regression loss)

Perceptron approximation: f(w,xi) = u(WTXi) ~ J(WTXi)

Consider two probability distributions
over two classes (e.g. bass or salmon) :  (y,1—y) and (o,1—0)

bass salmon

Total loss: Z (—yian(WTXi) — (l—yi)ln(l—U(WTXi)))
tEtrain
= | LW) =- > hoW'X") - > hl-ocW'X")
1€train 1€train
y' =1 y =0 ,

|
\ J

|
sum of Negative Log-Likelihoods (NLL)




Towards Multi-label Classification

Remember: basic perceptron U(WTX)
(Xp)—+—
58

@——»@% W+X 1or 0
I label

weighte inary
@ / sum  decision

Xy —

binary classification



Towards Multi-label Classification

Remember: “relaxed” perceptron 6(WTX)

(Xp)—+—
SR

Xy —

@ \WT X

e W R
weighted binary

@‘@7 sum  decision

oc(WTX)elo,1]

probability
distribution
(69 1 '6)

| PN

bass salmon

binary classification

not bass



Towards Multi-label Classification

This is yseq for
ually non-exclusjye
Categorieg

o(W{X)elo,1]

@: “probability”
T > of class 1

(W3 X) € [0,1]
ﬁ
“probability”

of class 2

use K linear transforms W, and sigmoids 6( WTX) mut

o(W3 X) € [0,1]
“probability”

of class 3

multi-label classification

Such “probability scores” 6, ©,, ..., O¢ over K classes do not add up to 1



Common Approach: Soft-Max

use K linear transforms W, and soft-max O (WX )

This 1s used for
mutually exclusive
categories
(only one can be true)

(61,02,...,0K)
< re
probability
some form of

normalization distribution

< basssalmon sturgeon

multi-label classification

Notation: K rows of matrix W are vectors W, so that vector WX has elements W, X



Soft-Max Function & : R® — Ax

Example: i
(" expal ) o exp(—3)
C ) Dk expar -3 exp(—3)+exp(2)+exp(1)
a2 exp a* , eXp(2)
“ > expa® exp(—3)+exp(2)+exp(1)
K 1 exp(1)
a K » _
o expa | exp(—3)+exp(2)+exp(l)
K
acR"Y sz = £ 0.005 |
g(a) € Ak =1 0.7275
0.2676 |

Soft-max normalizes logits vector a converting it to distribution over classes



Soft-Max Function & : R® — Ax

NN Example: 7 exp WX

/ exXp al \ Zk exp WgX
k
7, S, expa /W1T s exp WT X
2
P exp a WwIx > expWlX
> expat
K e WX exp Wi X
- J eXp a ~ ~ Zk eXp WIZX
ac RK sz exp a’; WX \_ J
_ c(WX)
a(a) c Ag

(5’1,5’2, ...,O’K)

basssalmon sturgeon

Soft-max normalizes logits vector a converting it to distribution over classes



Soft-Max Function & : R® — Ax

NOTE:
soft-max generalizes sigmoid
to multi-class predictions. Indeed,
consider binary perceptron with scalar
linear discriminator WX (e.g. for class 1)

1
T —
U(W X) T _WTX
sigmoid l+e
e3WTX WX
T WX | WX ) 01( _ngX )

class 1 output of soft-max for
a combination of two linear predictors:
WX for class 1 and - %W TX for class —1 (class 0)

NN Example: 7 exp WX
. . S exp WX
wix exp Wi X
WX > expWlX
Wg X exp W%X
N~ ~ > exp WX

\_ _/

wa c(WX)

(5’1,5’2, ...,5’K)

basssalmon sturgeon

Soft-max normalizes logits vector a converting it to distribution over classes



(general multi-class case)

Cross-Entropy Loss

K-label perceptron’s output: 0 (WX Z) for example X" f-th

Multi-valued label y* = k gives one-hot distribution ¥° = (0, 0@ 0,...,0)

Consider two probability distributions
over K classes (e.g. bass, salmon, sturgeon) : yi and ((_717 02,03, .- UK)

N

Pr(x' € Classk |W) = &,(WX")

basssalmon sturgeon

Cross entropy
Totalloss: L(W) = Z Z—}_’Zlﬂf_fk(WXi)

1€train  k

= LW) = — ) Ingy(WX")

1€train

sum of Negative Log-Likelihoods (NLL)



soft-max VS arg-max

Multi-label (linear) Classification

Define K linear transforms, from features X to K “/ogits”
logit, (X)=WIX for k=1,2,...K

e arg-max assigns X to class k corresponding to the largest logit
arg m]?,X{W,;‘FX}

* Let R, be decision region for class &k

all points X assigned to class k by arg-max
® R] ® °
B - wrix>wSx ° R,
soft-max &{WW, X } softens WX > WX W s T x
hard arg-max predictions WX > WX
similarly to how sigmoid ° -
softens unit-step function \J



Summary

Shallow neural network

dUniversal function approximation theorem

(A Deep neural network
W Multi layer perceptron
AN example: Implicit neural filed for shape representation

dLoss

Sigmoid, Softmax
U Cross entropy loss, quadratic loss

Next

JHow to train neural networks?




