

EECS 230 Deep Learning Lecture 2: Machine Learning

What is linear algebra?

 Linear algebra is the branch of mathematics concerning linear equations such as

$$a_1x_1+....+a_nx_n=b$$

- In vector notation we say $a^{T}x=b$
- Called a linear transformation of x
- Linear algebra is fundamental to geometry, for defining objects such as lines, planes, rotations

Linear equation $a_1x_1+....+a_nx_n=b$ defines a plane in $(x_1,...,x_n)$ space Straight lines define common solutions to equations

Linear Algebra Topics

- ☐ Scalars, Vectors, Matrices and Tensors
- ☐ Multiplying Matrices and Vectors
- ■Identity and Inverse Matrices
- ☐ Linear Dependence and Span
- **□**Norms
- ☐ Special kinds of matrices and vectors
- ☐ Eigendecomposition
- ☐ Singular value decomposition
- ☐ The Moore Penrose pseudoinverse
- ☐The trace operator
- ☐The determinant
- □Ex: principal components analysis

Scalar

- Single number
 - In contrast to other objects in linear algebra, which are usually arrays of numbers
- Represented in lower-case italic x
 - They can be real-valued or be integers
 - E.g., let $x \in IR$ be the slope of the line
 - Defining a real-valued scalar
 - E.g., let $n \in \mathbb{N}$ be the number of units
 - Defining a natural number scalar

Vector

- An array of numbers arranged in order
- Each no. identified by an index
- Written in lower-case bold such as x
 - its elements are in italics lower case, subscripted

$$oldsymbol{x} = \left[egin{array}{c} x_1 \ x_2 \ x_n \end{array}
ight]$$

- If each element is in R then x is in R
- We can think of vectors as points in space

Matrices

- 2-D array of numbers
 - So each element identified by two indices
- Denoted by bold typeface A
 - Elements indicated by name in italic but not bold
 - $A_{1,1}$ is the top left entry and $A_{m,n}$ is the bottom right entry
 - We can identify nos in vertical column j by writing : for the horizontal coordinate

• E.g.,
$$\mathbf{A} = \begin{bmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \end{bmatrix}$$

- $A_{i:}$ is i^{th} row of $A, A_{:j}$ is j^{th} column of A
- If A has shape of height m and width n with real-values then $A \in \mathbb{R}^{m \times n}$ Slide from S.

Tensor

- Sometimes need an array with more than two axes
 - E.g., an RGB color image has three axes
- A tensor is an array of numbers arranged on a regular grid with variable number of axes
 - See figure next
- Denote a tensor with this bold typeface: A
- Element (i,j,k) of tensor denoted by $A_{i,j,k}$

Multiplying matrices

- For product C=AB to be defined, A has to have the same no. of columns as the no. of rows of B
 - If A is of shape mxn and B is of shape nxp then matrix product C is of shape mxp

$$C = AB \Rightarrow C_{i,j} = \sum_{k} A_{i,k} B_{k,j}$$

- Note that the standard product of two matrices is not just the product of two individual elements
 - Such a product does exist and is called the element-wise product or the Hadamard product AOB

Linear transformation

- Ax=b
 - where $\mathbf{A} \in \mathbb{R}^{n \times n}$ and $\mathbf{b} \in \mathbb{R}^n$
 - More explicitly $A_{II}x_1 + A_{I2}x_2 + \dots + A_{In}x_n = b_1$

$$A_{1l}x_1 + A_{12}x_2 + \dots + A_{ln}x_n = b_1$$

$$A_{2l}x_1 + A_{22}x_2 + \dots + A_{2n}x_n = b_2$$

$$A_{nl}x_1 + A_{m2}x_2 + \dots + A_{nn}x_n = b_n$$

n equations inn unknowns

Can view A as a linear transformation of vector x to vector b

• Sometimes we wish to solve for the unknowns $x = \{x_1,...,x_n\}$ when A and b provide constraints

Matrix inverse

- Inverse of square matrix A defined as A⁻¹A=I_n
- We can now solve Ax=b as follows:

$$Ax = \mathbf{b}$$

$$A^{-1}Ax = A^{-1}\mathbf{b}$$

$$I_n x = A^{-1}\mathbf{b}$$

$$x = A^{-1}\mathbf{b}$$

- This depends on being able to find A⁻¹
- If A⁻¹ exists there are several methods for finding it

Norms

- Used for measuring the size of a vector
- Norms map vectors to non-negative values
- Norm of vector $\mathbf{x} = [x_1,...,x_n]^T$ is distance from origin to \mathbf{x}
 - It is any function f that satisfies:

$$f(\boldsymbol{x}) = 0 \Rightarrow \boldsymbol{x} = 0$$

$$f(\boldsymbol{x} + \boldsymbol{y}) \le f(\boldsymbol{x}) + f(\boldsymbol{y}) \quad \text{Triangle Inequality}$$

$$\forall \alpha \in R \quad f(\alpha \boldsymbol{x}) = |\alpha| f(\boldsymbol{x})$$

I ^p Norm

Definition:

$$\left|\left|\left|\boldsymbol{x}\right|\right|_{p} = \left(\sum_{i}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}}\right|$$

$-L^2$ Norm

- Called Euclidean norm
 - Simply the Euclidean distance between the origin and the point **x**
 - written simply as ||x||
 - Squared Euclidean norm is same as x^Tx

$-L^1$ Norm

- Useful when 0 and non-zero have to be distinguished
 - Note that L^2 increases slowly near origin, e.g., $0.1^2=0.01$)

Norm
$$||x||_{\infty} = m$$

Called max norm

Special kind of vectors

- Unit Vector
 - A vector with unit norm
- Orthogonal Vectors
 - A vector **x** and a vector **y** are orthogonal to each other if **x**^T**y**=0
 - If vectors have nonzero norm, vectors at 90 degrees to each other
 - Orthonormal Vectors
 - Vectors are orthogonal & have unit norm
 - Orthogonal Matrix
 - A square matrix whose rows are mutually
 - orthonormal: $A^TA = AA^T = I$ $A^{-1} = A^T$

Eigenvector

 An eigenvector of a square matrix A is a non-zero vector v such that multiplication by A only changes the scale of v

- The scalar λ is known as eigenvalue
- If v is an eigenvector of A, so is any rescaled vector sv. Moreover sv still has the same eigen value. Thus look for a unit eigenvector

Wikipedia

Eigendecomposition

- Suppose that matrix A has n linearly independent eigenvectors $\{v^{(1)},...,v^{(n)}\}$ with eigenvalues $\{\lambda_1,...,\lambda_n\}$
- Concatenate eigenvectors to form matrix V
- Concatenate eigenvalues to form vector $\lambda = [\lambda_1,...,\lambda_n]$
- Eigendecomposition of A is given by
 A=Vdiag(λ)V¹

Effect of eigenvalue and eigenvector

- Example of 2×2 matrix
- Matrix A with two orthonormal eigenvectors
 - – $V^{(1)}$ with eigenvalue λ_1 , $V^{(2)}$ with eigenvalue λ_2

Plot of unit vectors $u \in U^2$ (circle)

with two variables x_1 and x_2

Plot of vectors *Au* (ellipse)

Positive Semidefinite Matrix (PSD)

- A matrix whose eigenvalues are all positive is called positive definite
 - Positive or zero is called positive semidefinite
- If eigen values are all negative it is negative definite
 - Positive definite matrices guarantee that x^TAx≥0

Singular Value Decomposition (SVD)

- Eigendecomposition has form: A=Vdiag(λ)V⁻¹
 - If A is not square, eigendecomposition is undefined
- SVD is a decomposition of the form A=UDV^T
- SVD is more general than eigendecomposition
 - Used with any matrix rather than symmetric ones
 - Every real matrix has a SVD
 - Same is not true of eigen decomposition

Probability and Statistics

- Probability Theory
 - A mathematical framework for representing uncertain statements
 - Provides a means of quantifying uncertainty and axioms for deriving new uncertain statements
- Use of probability theory in artificial intelligence
 - 1.Tells us how AI systems should reason
 - So we design algorithms to compute or approximate various expressions using probability theory
 - 2. Theoretically analyze behavior of AI systems

Random Variable

- Variable that can take different values randomly
- Scalar random variable denoted x
- Vector random variable is denoted in bold as
- Values of r.v.s denoted in italics x or x
 - Values denoted as $Val(x) = \{x_1, x_2\}$
- Random variable must has a probability distribution to specify how likely the states are
- Random variables can be discrete or continuous
 - Discrete values need not be integers, can be named states
 - Continuous random variable is associated with a real value

Probability Distribution

- ☐A probability distribution is a description of how likely a random variable or a set of random variables is to take each of its possible states
- ☐ The way to describe the distribution depends on whether it is discrete or continuous

Continuous Variables and PDFs

- When working with continuous variables, we describe probability distributions using probability density functions
- To be a pdf p must satisfy:
- The domain of p must be the set of all possible states of x.
- $\forall x \in x, p(x) \ge 0$. Note that we do not require $p(x) \le 1$.
- $\int p(x)dx = 1$.

Marginal distribution

- ☐Sometimes we know the joint distribution of several variables
- ☐And we want to know the distribution over some of them
- ☐ It can be computed using

$$\forall x \in \mathbf{x}, P(\mathbf{x} = x) = \sum_{y} P(\mathbf{x} = x, \mathbf{y} = y)$$

$$p(x) = \int p(x, y) dy$$

Conditional probability

- We are often interested in the probability of an event given that some other event has happened
- This is called conditional probability
- It can be computed using

$$P(y = y \mid x = x) = \frac{P(y = y, x = x)}{P(x = x)}$$

Chain rule of conditional probability

 Any probability distribution over many variables can be decomposed into conditional distributions over only one variable

$$P(\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(n)}) = P(\mathbf{x}^{(1)}) \prod_{i=2}^{n} P(\mathbf{x}^{(i)} \mid \mathbf{x}^{(1)}, \dots, \mathbf{x}^{(i-1)})$$

An example with three variables

$$P(\mathbf{a}, \mathbf{b}, \mathbf{c}) = P(\mathbf{a} \mid \mathbf{b}, \mathbf{c}) P(\mathbf{b}, \mathbf{c})$$

$$P(\mathbf{b}, \mathbf{c}) = P(\mathbf{b} \mid \mathbf{c}) P(\mathbf{c})$$

$$P(\mathbf{a}, \mathbf{b}, \mathbf{c}) = P(\mathbf{a} \mid \mathbf{b}, \mathbf{c}) P(\mathbf{b} \mid \mathbf{c}) P(\mathbf{c})$$

Independence and conditional independence

- Independence: x⊥y
 - Two variables x and y are independent if their probability distribution can be expressed as a product of two factors, one involving only x and the other involving only y

$$\forall x \in \mathbf{x}, y \in \mathbf{y}, \ p(\mathbf{x} = x, \mathbf{y} = y) = p(\mathbf{x} = x)p(\mathbf{y} = y)$$

- Conditional Independence: x⊥y z
 - Two variables x and y are independent given variable z, if the conditional probability distribution over x. and y factorizes in this way for every z

$$\forall x \in x, y \in y, z \in z, \ p(x = x, y = y \mid z = z) = p(x = x \mid z = z)p(y = y \mid z = z)$$

Common probability distribution

- Several simple probability distributions are useful in may contexts in machine learning
 - Bernoulli over a single binary random variable
 - Multinoulli distribution over a variable with k states
 - Gaussian distribution
 - Mixture distribution

Mixture of Distribution

- A mixture distribution is made up of several component distributions
- On each trial, the choice of which component distribution generates the sample is determined by sampling a component identity from a multinoulli distribution:

$$P(\mathbf{x}) = \sum_{i} P(\mathbf{c} = i) P(\mathbf{x} \mid \mathbf{c} = i)$$

- where P(c) is a multinoulli distribution

Gaussian mixture model

- Components p(x|c=i) are Gaussian
- Each component has a separately parameterized mean $\mu^{(i)}$ and covariance $\Sigma^{(i)}$
- Any smooth density can be approximated with

enough components

- Samples from a GMM:
 - -3 components

Bayes's rule

- □Bayes' theorem (alternatively Bayes' law or Bayes' rule), named after Thomas Bayes, describes the probability of an event, based on prior knowledge of conditions that might be related to the event.
- □ For example, if the risk of health problems is known to increase with age, Bayes' theorem allows the risk to an individual of a known age to be assessed more accurately by conditioning it relative to their age.

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(A) * P(B|A)}{P(B)}$$

Major Types of machine learning

□Supervised learning: Given pairs of input-output, learn to
map the input to output
☐Image classification
☐Speech recognition
☐Regression (continuous output)
□Unsupervised learning: Given unlabeled data, uncover the underlying structure or distribution of the data □Clustering □Dimensionality reduction
□Reinforcement learning: training an agent to make decisions within an environment to maximize a cumulative reward □Game playing (e.g., AlphaGo) □Robot control

Subtypes of supervised ML

□Classification
 □output belongs to a finite set
 □example: age ∈ {baby, child, adult, elder}
 □output is also called class or label
 □Regression
 □output is continuous
 □examples: age ∈ [0,130]
 □Difference mostly in design of loss functions

Example: supervised digit recognition

☐ Easy to collect images of digits with their correct labels

☐ML algorithm can use collected data to produce a program for recognizing previously unseen images of digits

Example: Regression

Supervised ML

- We are given

 - Training examples x¹, x²,..., xⁿ
 Target output for each sample y¹, y²,..., yⁿ

- □ Training phase
 - estimate function y = f(x) from labeled data where f(x) is called *classifier*, *learning machine*, *prediction function*, etc.
- ☐ Testing phase (deployment)
 - \Box predict output f(x) for a new (unseen) sample x

Training/Testing Phases Illustrated

Training phase as parameter estimation

 \Box Estimate prediction function y = f(x) from labeled data

Typically, search for f is limited to some type/group of functions ("hypothesis space") parameterized by weights \boldsymbol{w} that must be estimated

$$f_w(x)$$
 or $f(w,x)$

$$(w = ?)$$

Goal: find classifier parameters (weights) w so that $f(w,xi) = y^i$ "as much as possible" for all training examples,

Loss function

 \square Training dataset of I pairs of input/output examples

$$\{\mathbf{x}_i, \mathbf{y}_i\}_{i=1}^I$$

Loss function or cost function measures how bad model is:

$$\mathbf{w}^* = \operatorname{arg\,min}_{\mathbf{w}} \Sigma_{\mathbf{i}} L(\mathbf{y}^{\mathbf{i}}, \mathbf{f}(\mathbf{w}, \mathbf{x}^{\mathbf{i}}))$$

 $\Box \phi$ is also a common notation for weights

Example: 1D Linear regression

☐Model:

$$y = f[x, \phi]$$
$$= \phi_0 + \phi_1 x$$

■Parameters

$$\phi = egin{bmatrix} \phi_0 \ \phi_1 \end{bmatrix}$$
 — y-offset slope

Example: 1D Linear regression

☐Model:

$$y = f[x, \phi]$$
$$= \phi_0 + \phi_1 x$$

■Parameters

Loss function:

$$L[\phi] = \sum_{i=1}^{I} (f[x_i, \phi] - y_i)^2$$
$$= \sum_{i=1}^{I} (\phi_0 + \phi_1 x_i - y_i)^2$$

Loss function:

$$L[\phi] = \sum_{i=1}^{I} (f[x_i, \phi] - y_i)^2$$
$$= \sum_{i=1}^{I} (\phi_0 + \phi_1 x_i - y_i)^2$$

Loss function:

$$L[\phi] = \sum_{i=1}^{I} (f[x_i, \phi] - y_i)^2$$
$$= \sum_{i=1}^{I} (\phi_0 + \phi_1 x_i - y_i)^2$$

Loss function:

$$L[\phi] = \sum_{i=1}^{I} (f[x_i, \phi] - y_i)^2$$
$$= \sum_{i=1}^{I} (\phi_0 + \phi_1 x_i - y_i)^2$$

Loss function:

$$L[\phi] = \sum_{i=1}^{I} (f[x_i, \phi] - y_i)^2$$
$$= \sum_{i=1}^{I} (\phi_0 + \phi_1 x_i - y_i)^2$$

Gradient Descent

☐ Example: for a function of two variables

Possible objections

- ☐But you can fit the line model in closed form!
 - ☐Yes but we won't be able to do this for more complex models
- ☐But we could exhaustively try every slope and intercept combo!
 - ☐Yes but we won't be able to do this when there are a million parameters

Example: Linear Classification

- □For example: fish classification salmon or sea bass?
- □extract two features, *fish length* and *fish brightness*

□yⁱ is the output (label or target) for example xⁱ

super-indices (or sub-indices)

assuming the context is "clear"

For two class problem and 2-dimensional data (feature vectors)

Question:

Is it possible to find a linear transformation onto 1D so that transformed 1D points can be separated (by a *threshold*)?

For two class problem and 2-dimensional data (feature vectors)

Answer:

In this case, YES, because the data is linearly separable in the original feature space. So, what is the transformation?

For two class problem and 2-dimensional data (feature vectors)

This 2D \rightarrow 1D linear transformation is a projection onto the **normal** of the separating **hyper-plane**.

For two class problem and 2-dimensional data (feature vectors)

In fact, <u>any</u> 2D \rightarrow 1D linear transformation $\mathbf{w} = (\mathbf{w_0}, \mathbf{w_1}, \mathbf{w_2})$ is a **projection onto normal of some hyper-plane**. So, original question really asks if there is a hyper-plane separating data.

For two class problem and 2-dimensional data (feature vectors)

For two class problem and 2-dimensional data (feature vectors)

• Can be generalized to feature vectors \mathbf{x} of any dimension m:

$$\mathbf{f}(W,X) = \mathbf{u}\left(W^TX\right) \quad \text{for } W^T = [\mathbf{w}_0, \mathbf{w}_1, ..., \mathbf{w}_m] \quad \text{and} \quad X^T = [1, \mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_m] \quad \text{homogeneous representation}$$

of feature vector x

 Classifier that makes decisions based on linear combination of features is called a linear classifier

Linear Classifiers

bad w

classification error 38%

projected points onto normal line are all mixed-up

better w

classification error 4%

projected points onto normal line are well separated UCMERCED

Underfitting

For some types of data no linear decision boundary can separate the samples well

- ☐ Classifier underfits the data if it can produce decision boundaries that are too simple for this type of data
 - chosen classifier type (hypothesis space) is not expressive enough

More complex (non-linear) classifiers

- \square for example, if f(w,x) is a polynomial of high degree
- ☐ can achieve 0% classification error

More complex (non-linear) classifiers

- ☐ The goal is to classify well on new data
- ☐ Test "wiggly" classifier on new data: 25% error

Overfitting

- □ Amount of data for training is always limited
- ☐ Complex model often has too many parameters to fit reliably to limited data
- ☐ Complex model may adapt too closely to "random noise" in training data, rather than look at a "big picture"

Overfitting: Extreme Example

- ☐ Two class problem: face and non-face images
- ☐ Memorize (i.e. store) all the "face" images
- ☐ For a new image, see if it is one of the stored faces
 - ☐ if yes, output "face" as the classification result
 - ☐ If no, output "non-face"

problem:

- □zero error on stored data, 50% error on test (new) data
- ☐ decision boundary is very irregular
- ☐ Such learning is memorization without generalization

- ☐ Ability to produce correct outputs on previously unseen examples is called **generalization**
- ☐ Big question of learning theory: how to get good generalization with a limited number of examples
- ☐ Intuitive idea: **favor simpler classifiers**
- ☐ Simpler decision boundary may not fit ideally to training data but tends to generalize better to new data

Underfitting → Overfitting

underfitting

- ☐ high training error
- ☐ high test error

"just right"

- ☐ low training error
- ☐ low test error

overfitting

- ☐ low training error
- ☐ high test error

