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What is linear algebra?

 Linear algebra is the branch of mathematics
concerning linear equations such as
a\x\t.....ta,x,=b
— In vector notation we say a™x=b
— Called a linear transformation of x

 Linear algebra is fundamental to geometry, for
defining objects such as lines, planes, rotations

Linear equation aix+.....tax,=b
defines a plane in (xi,..,x,) space
Straight lines define common solutions
to equations




Linear Algebra Topics

AScalars, Vectors, Matrices and Tensors
JMultiplying Matrices and Vectors
dIdentity and Inverse Matrices
Linear Dependence and Span
dNorms

dSpecial kinds of matrices and vectors
JEigendecomposition

Singular value decomposition

JThe Moore Penrose pseudoinverse
dThe trace operator

dThe determinant

JEx: principal components analysis . bl
Slide from S. Srihari Slide from S. Srihari



Scalar

* Single number

— In contrast to other objects in linear algebra,
which are usually arrays of numbers

* Represented in lower-case italic x

— They can be real-valued or be integers
®* E.g., let x eIRDbe the slope of the line
— Defining a real-valued scalar

* E.g., letn eN be the number of units
— Defining a natural number scalar




Vector

* An array of numbers arranged in order

Each no. identified by an index

Written in lower-case bold such as x
— its elements are in italics lower case, subscripted

Ly

Xz
n

If each element is in R then x is in R
We can think of vectors as points in sp
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Matrices

« 2-D array of numbers
— So each element identified by two indices
* Denoted by bold typeface 4

— Elements indicated by name in italic but not bold
* A, ,is the top left entry and 4, , is the bottom right entry

« We can identify nos in vertical column j by writing : for the horizontal
coordinate

° Eg’ A1,1 A1,2
A=
A2,1 A2,2

« A;isith row of 4, 4. is jth column of A4

* If A has shape of height m and width » with real-
values then 4egrm™n
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Tensor

Sometimes need an array with more than two axes
— E.g., an RGB color image has three axes
Atensor is an array of numbers arranged on a
regular grid with variable number of axes

— See figure next

Denote a tensor with this bold typeface: A

Element (ij,k) of tensor denoted by A;




Multiplying matrices

* For product c=4Bto be defined, 4 has to have
the same no. of columns as the no. of rows of B

— If 4 1s of shape mxn and B is of shape nxp then
matrix product C is of shape mxp

C=AB=C,, =) AB,
k

— Note that the standard product of two matrices is
not just the product of two individual elements

« Such a product does exist and is called the element-wisg
product or the Hadamard product 40 B
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Linear transformation

e Ax=b
—where AcR™ and beR”
— More expliCitly [ 4.+, +..+ 40,5,

Ayx;+ Apx, +.t Ayx, = b,

n equations in
n unknowns

Appe;+ Appx, +..+ Apx, = by,

_|
>

b . . .
i Can view 4 as a linear transformation

1 n |
I of vector x to vector b

|
X b |

[ 7
|
1
N

=|

b
i "
nxn nx1 nXx

« Sometimes we wish to solve for the unknow
x ={x1,..,.x,} when 4 and b provide constrai

,_
>
3
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Matrix inverse

* Inverse of square matrix 4 defined as A'A=I

 \We can now solve Ax=b as follows:
Ax=b
A'Ac=A"b
hx=A4b
x=A"b

* This depends on being able to find 4!

e |f A-1 exists there are several methods for
finding it




Norms

» Used for measuring the size of a vector
 Norms map vectors to non-negative values

* Norm of vector x=[x,...x,JT is distance from origin to x
—Itis any function f that satisfies:

flz)=0=2z=0
flx+y)< f(a:)-/— f(y) Triangle Inequality
VoaeR f(aa:):‘oc|f(a:)




LP Norm

e Definition:

W~k )

_L2 Norm ) 12

 Called Euclidean norm
— Simply the Euclidean distance

X1

between the origin and the point x Ao
— written simply as || x| |
— Squared Euclidean norm is same as xTx b 2"
— [T"Norm J2ri22 |- Js=2:f

« Useful when 0 and non-zero have to be distinguished
— Note that L2 increases slowly near origin, e.g., 0.12=0.01)

ax‘xi‘

A

— L= Norm HiBH =m
o0

e Called max norm



Special kind of vectors
Unit Vector ST
— A vector with unit norm HxH2=l [ 3H0H _2}
Orthogonal Vectors

— Avector xand a vector yare
orthogonal to each other if x'y=0

 If vectors have nonzero norm, vectors at
90 degrees to each other

— Orthonormal Vectors
* Vectors are orthogonal & have unit norm
* Orthogonal Matrix
— A square matrix whose rows are mutually
— orthonormal: ATA=AAT=/
A1=AT




Eigenvector

* An eigenvector of a square matrix Ais
a non-zero vector vsuch that

multiplication by Aonly changes the ¥y o~
scale of v N |
Av=lv /
— The scalar A is known as eigenvalue 0 x XX
- If vis an eigenvector of A, so is any Mg?g:;:d“g“m
rescaled vector sv. Moreover sv still Wikipedia

has the same eigen value. Thus look
for a unit eigenvector




Eigendecomposition

« Suppose that matrix Ahas n linearly
independent eigenvectors {v(),..,vin} with
eigenvalues {A4,..,\,}

« Concatenate eigenvectors to form matrix V
« Concatenate eigenvalues to form vector
A=[A1,..,\n]
» Eigendecomposition of Ais given by
A=Vdiag(») /'




Effect of eigenvalue and eigenvector

 Example of 2 x2 matrix

* Matrix Awith two orthonormal eigenvectors

 — VIl with eigenvalue A4, VI2) with eigenvalue A,

Plot of unit vectors u €U’

(circle)

Before multiplication

1r ()

— 0__
@

—1}

with two variables x4 and x»

Plot of vectors Au
(ellipse)

After multiplication




Positive Semidefinite Matrix (PSD)

* A matrix whose eigenvalues are all positive is called
positive definite
— Positive or zero is called positive semidefinite

* If eigen values are all negative it is negative
definite
— Positive definite matrices guarantee that xAx20




Singular Value Decomposition (SVD)

» Eigendecomposition has form: A=Vdiag(})\*!
— If A i1s not square, eigendecomposition is undefined
* SVD is a decomposition of the form A=UDV"

* SVD is more general than eigendecomposition
— Used with any matrix rather than symmetric ones

— Every real matrix has a SVD
« Same is not true of eigen decomposition
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Probability and Statistics

* Probability Theory

— A mathematical framework for representing
uncertain statements

— Provides a means of quantifying uncertainty and
axioms for deriving new uncertain statements

* Use of probability theory in artificial intelligence

e 1.Tells us how Al systems should reason

 So we design algorithms to compute or approximate
various expressions using probability theory

2.Theoretically analyze behavior of Al system



Random Variable

 Variable that can take different values randomly
« Scalar random variable denoted x

* Vector random variable is denoted in bold as

* Values of r.v.s denoted in italics x or x

— Values denoted as Val(x)={x;,x,}

 Random variable must has a probability distribution
to specify how likely the states are

« Random variables can be discrete or continuous

— Discrete values need not be integers, can be named states
— Continuous random variable is associated with a real value




Probability Distribution

A probability distribution is a description of how likely a
random variable or a set of random variables is to take each
of its possible states

JThe way to describe the distribution depends on whether it
is discrete or continuous




Continuous Variables and PDFs

» When working with continuous variables, we
describe probability distributions using probability
density functions

* To be a pdf p must satisfy:

e The domain of p must be the set of all possible states of x.
e Vx € x,p(x) > 0. Note that we do not require p(x) < 1.

o [p(r)dx=1.




Marginal distribution

dSometimes we know the joint distribution of several
variables

JANnd we want to know the distribution over some of them

It can be computed using

Y Ew Plr=%]= ZP(X =% ¥ =)
y

p(x) = / p(z,y)dy




Conditional probability

« We are often interested in the probability of an event given
that some other event has happened

« This is called conditional probability
It can be computed using

Py =y,x = z)

Ply=y|x=1z)= Plx=1)




Chain rule of conditional probability

* Any probability distribution over many variables can
be decomposed into conditional distributions over
only one variable

P, xM) = PRI, PO [ <), x70)

&

* An example with three variables
Pla.bel = .P{a|b.c)P(b,c)
Py = Pih|zPle)
Pla,bel = Pla|bie)rth | 8 Plp)




Independence and conditional independence

* |ndependence: |xLly

— Two variables x and y are independent if their probability
distribution can be expressed as a product of two factors,
one involving only x and the other involving only y

Veex,yey, px=x,y=vy) =px=2)p(y =y)
» Conditional Independence: [xLy |z

— Two variables x and y are independent given variable z, if
the conditional probability distribution over x. andy
factorizes in this way for every z

Ve exyeyrzen plx=ny=glz=zl=plx=z|z=zlplyr=9|z2=3



Common probability distribution

* Several simple probability distributions are
useful in may contexts in machine learning
— Bernoulli over a single binary random variable
— Multinoulli distribution over a variable with £ states
— Gaussian distribution
— Mixture distribution




Mixture of Distribution
* A mixture distribution is made up of several
component distributions

* On each trial, the choice of which component
distribution generates the sample is determined by

sampling a component identity from a multinoulli
distribution:

P(x) = ZP(C = i)P(x | c=1i)

—where P(c) is a multinoulli distribution
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Gaussian mixture model

Components p(x|c=i) are Gaussian

Each component has a separately
parameterized mean pu® and covariance X®

Any smooth density can be approximated with
enough components

Samples from a GMM: . "‘b

— 3 components }

:.

‘ °




Bayes’s rule

(Bayes' theorem (alternatively Bayes' law or Bayes'
rule), named after Thomas Bayes, describes
the probability of an event, based on prior knowledge
of conditions that might be related to the event.

dFor example, if the risk of health problems is known to
Increase with age, Bayes' theorem allows the risk to an
individual of a known age to be assessed more
accurately by conditioning it relative to their age.

P(ANB) P(A)=P(B|4)
P(B) P(B)

P(A|B) =



https://en.wikipedia.org/wiki/Thomas_Bayes
https://en.wikipedia.org/wiki/Probability
https://en.wikipedia.org/wiki/Event_(probability_theory)
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Major Types of machine learning

ASupervised learning: Given pairs of input-output, learn to
map the input to output
dImage classification
Speech recognition
(JRegression (continuous output)

JdUnsupervised learning: Given unlabeled data, uncover the
underlying structure or distribution of the data

U Clustering
Dimensionality reduction

(JReinforcement learning: training an agent to make decisions
within an environment to maximize a cumulative reward
U Game playing (e.g., AlphaGo)
(dRobot control



Subtypes of supervised ML

Classification
output belongs to a finite set
Uexample: age € {baby, child, adult, elder}
Woutput is also called class or label

JRegression
Houtput is continuous
Uexamples: age € [0,130]

Difference mostly in design of loss functions




Example: supervised digit recognition

JEasy to collect images of digits with their correct labels

0 — 0700000000

1 — /AN

o S 2@ TEREEEE

8 —> IEREEERRER :
known 4 — A IR AN I 1mage
labels 5 - S FENHEEEREG data

6 S bl bllbblible ¢

7 — 77D ZER

8 — HHEERGRENE

9 — 1/99/9/4a2ls/4 49

ML algorithm can use collected data to produce a program
for recognizing previously unseen images of digits

O.—>O Y — 4

automatically : automatic
produced label new image produ

new image




Example: Regression

Real world input

6000 square feet,
4 bedrooms,
previously sold for
$235K in 2005,

1 parking spot.

Model
iInput

(6000 |

—> [ 235 —»

2005

Model

Model
output

Supervised learning
model

t—> [340}—>

Real world output

Predicted price
is $340k




Supervised ML

d We are given
1. Training examples x', x2,..., x"
labeled data
2. Target output for each sample yi, y?,..., y"
U Training phase
- estimate function y = f(x) from labeled data

where f(Xx) is called classifier, learning machine, prediction function, etc.

 Testing phase (deployment)
4 predict output f(x) for a new (unseen) sample x




Training/Testing Phases lllustrated

Training

/training examplea [ training ]

0Z000d0000c labels

JAIESIVA VAN WA RN N ARSI
27l Laedz2> '
33232333

LTt . feature = | Train Learned
bbolbblsclb et Vectors ralnlng mOdel f

7171171 7/'17]2]7]72
& t|7]|#8]¢]%2]2E
7222121 7/9]17

- /

Testing

feature Learned
‘f ‘[ vector ]‘[ modelf]

test Image

label
prediction




Training phase as parameter estimation

Estimate prediction function y = f(x) from labeled data

Typically, search for f is limited to some type/group of
functions (“hypothesis space’) parameterized by weights w
that must be estimated

fu@) or f(w,x)

Goal: find classifier parameters (weights) w so that f(w,xi) = y'
“as much as possible” for all training examples,



Loss function

dTraining dataset of / pairs of input/output examples
I
{Xi, ¥i}iz1

_Iloss function or cost function measures how bad model is:

*

w* = argmin, J; L(y', f(w,x))

¢ is also a common notation for weights




Example: 1D Linear regression

dModel:

y = flz, @]
= Qo + P17

JParameters

¢ _ [¢0] «— y-offset

¢1 <+«—— slope




Example: 1D Linear regression

dModel:

y = flz, @]
= Qo + P17

JParameters

¢ _ [¢0] «— y-offset

¢1 <+«—— slope




Example: 1D Linear regression training data

2.0
&
e © © ¢ Loss function:
O
> ® ;
5 — 2
210 %o Lig] =Y (flxi, ] — us)
5 ® i=1
@) '. 7
| = Z(% + g1z — Yi)”
i=1
T Y “Least squares loss function”

Input,




Example: 1D Linear regression training data

2.0

Loss, L =7.11
o OO ’. ? Loss function:
> T el il :
W R L — 2
210 ®e ¥ L|g] Z(f[aﬁz,qﬁ] Yi)
5 @ . T ¥ i=1
o |, L e I
B = > (60 -+ aw: — 1)
) S “Least squares loss function”

Input, x




Example: 1D Linear regression training data

2.0

Loss, . = 10.22

Loss function:

I
= (¢o+ ¢r1ai — i)’

1=1

“Least squares loss function”




Example: 1D Linear regression training data

2.0

Loss, L = 0.19

Loss function:

I

2
= (0 + b1 — ys)
i=1
T S “Least squares loss function”

Input, x




Example: 1D Linear regression loss function

Loss function:

= (¢o+ ¢r1ai — i)’

Q 2.0
Opn 0
g
» L, d)()
<, . nterce\) “«

Least squares loss function”




Example: 1D Linear regression loss function

20
20 Loss, L = 7.11 ’.
" o oo ©
? el i
-3
~0.4,00 7
b 0
1.0

Input,




Example: 1D Linear regression loss function

2.0

Loss, L. = 10.22




Example: 1D Linear regression loss function

2.0

Loss, L = 0.19




Example: 1D Linear regression loss function

0.0 1.0
Intercept, ¢g



Gradient Descent

JExample: for a function of two variables

t L(Po, P1)

.........................................
-------------------------------------------
---------------
Taag
"uy
"y
L
L
0
‘e

LSRR LA LLLE N
",
o

- §1

update equation for a point ¢ = [¢¢, P1]

¢'=¢ —aVl

Stop at a local minima where V. = 0



Example: 1D Linear regression training

0.0 1.0 20 00 10
Intercept, ¢ Input, =




Example: 1D Linear regression training

0.0 1.0 20 00 10
Intercept, ¢ Input, =




Example: 1D Linear regression training

0.0 1.0 20 00 10
Intercept, ¢ Input, =




Example: 1D Linear regression training

0.0 1.0 2.0
Intercept, ¢



Example: 1D Linear regression training

0.0 1.0 2.0
Intercept, ¢



Possible objections

dBut you can fit the line model in closed form!
dYes — but we won’t be able to do this for more complex models

(JBut we could exhaustively try every slope and intercept
combo!

dYes — but we won’t be able to do this when there are a million
parameters




Example: Linear Classification

dFor example: fish classification - salmon or sea bass?
extract two features, fish length and fish brightness

. X3= 2.3 X 4 _ 6.4 ey, individuali
' 1.7 7.0 & features X,

e.g. fish length
and brightness

feature = x1_ {3-3}
5.7

vector

salmon sea bass salmon sea bass

y'=0 y2=1 y3=0 y4=1

dy' is the output (label or target) for example x’




Linear classifier example: perceptron
Frank Rosenblatt, 1958

m-dimensional
feature vector x! € R™
with m components

X1
X5

XD =

ooo\

| % _

sub-indices arem

feature components
while
super-indices are for

data points (feature vectors

inspired by neurons

®_
\

—»

—

‘/eighted binary
sum decision

f(w,x!)

lor0Q
S
label

(sign function)

more on the next slides

)\NOTE: for simplicity, we omit
super-indices (or sub-indic
assumine the context 1s ¢

(4



Linear classifier example: perceptron

For two class problem and 2-dimensional data (feature vectors)

4 x1 consider some
X e O . .
2 o 99 o linear transformation
. © o o from 2D space to 1D
o ® : f
o o n n points 0
. o ° ° o o WoTWiX1TW2X; two classes
] o can be
e o X ° o
o o o completely
e o o o mixed
® o o
o ®
o x1
>
Question:

Is it possible to find a linear transformation onto 1D
transformed 1D points can be separated (by a thr



Linear classifier example: perceptron

For two class problem and 2-dimensional data (feature vectors)
NOTE

can always shift
threshold to 0

A (414 d)’
X . 850 . using weight wy
2 linear transformation
from 2D space to 1D
o . . good
WoTWiXTW3X, 0 separation
° by simple
threshold
o
Answer:

In this case, YES, because the data is linearly separable
in the original feature space. So, what 1s the transformation?



Linear classifier example: perceptron

For two class problem and 2-dimensional data (feature vectors)

A “gOOd,’
X2 linear transformation
from 2D space to 1D

o . . good
WoTWiXTW3X, 0 separation
° by simple
threshold

o
(wWy,w,) — are the coordinates of the normal
wo — 1s “bias” (shifting threshold to 0)
Answer: '

This 2D — 1D linear transformation 1s a projection onto the
normal of the separating hyper-plane.



Linear classifier example: perceptron
For two class problem and 2-dimensional data (feature vectors)

A “gOOd,’
X2 linear transformation
from 2D space to 1D d
o goo
%
WT)_'_WIXI_'_WEXZ 0 separation

by simple
:> threshold

(wWy,w,) — are the coordinates of the normal
— 18 “b1as” (shifting threshold to 0)

Wy

In fact, any 2D — 1D linear transformation w = (wy,w{,w,) 1s
a projection onto normal of some hyper-plane. So, original

question really asks if there 1s a hyper-plane separating data.



Linear classifier example: perceptron

For two class problem and 2-dimensional data (feature vectors)

<
4 “good”
X2 linear transformation
H(1) label
. o from 2D space to 1D ood
% % 0“‘ g
o WoTWiX TW3X, = ( separation
° o 3 :
by simple
° ’ threshold
@ ] @
o W0 + W1X1 J;W2X2.< 0 >@ label
e o
v
thresholding f _ 4+ 4+
(W.X) = u (WotwX;1W)X;) f(w,x) € {0,1}
can be formally
repre.se.nted by this 1 u(t) . P (1 ift>0
prediction function . unit step function u(t) := 0 O
» ¢ (a.k.a. Heaviside function)




Linear classifier example: perceptron

For two class problem and 2-dimensional data (feature vectors)

decision boundary

Can use this function to
classify any (new) point.

« Can be generalized to feature vectors x of any dimension m :
fV, X)) =u(W'X) for WT = [wo, wi,...,wy,] and X7 =[1,x1,Xa2, ..., Xm]

(13 84 ”» .
bias homogeneous representation

- Classifier that makes decisions based on linear ~ ®™ever>
combination of features is called a linear classifier



Linear Classifiers

bad w

W = (W,W1,W;)

better w

classification error 38%

projected points onto
normal line are all mixed-up

classification error 4%

projected points ont
normal line are well s



Underfitting

For some types of data
no linear decision boundary
can separate the samples well

 Classifier underfits the data if it can produce decision
boundaries that are too simple for this type of data

- chosen classifier type (hypothesis space) is not expressive eno



More complex (non-linear) classifiers

Xz\ﬂ oo %0 o
o

dfor example, if f(w,x) is a polynomial of high degree

dcan achieve 0% classification error



More complex (non-linear) classifiers

dThe goal is to classify well on new data

dTest “wiggly” classifier on new data: 25% error



Overfitting

O Amount of data for training is always limited

O Complex model often has too many parameters
to fit reliably to limited data

d Complex model may adapt too closely to “random noi
In training data, rather than look at a “big picture”




Overfitting: Extreme Example

JTwo class problem: face and non-face images

dMemorize (i.e. store) all the “face” images

JFor a new image, see if it is one of the stored faces

if yes, output “face” as the classification result

If no, output “non-face”

Jproblem:
Jzero error on stored data, 50% error on test (new) data

ddecision boundary is very irregular

JSuch learning is memorization without generalization

slide is modified ffom Y. LeCun



Generalization
training data new data

J Ability to produce correct outputs on previously unseen examples
is called generalization

1 Big question of learning theory: how to get good generalization
with a limited number of examples

 Intuitive idea: favor simpler classifiers

1 Simpler decision boundary may not fit ideally to training data
tends to generalize better to new data



Underfitting - Overfitting

underfitting “just right” overfitting

 high training error O low training error O low training error
O high test error O low test error O high test error




