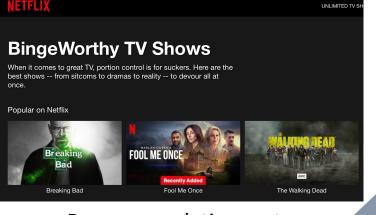


EECS 230 Deep Learning Lecture 1: Introduction

Machine learning

□What is machine learning?

The capability of a machine to learn from data to imitate intelligent human behavior.


Many Applications

Autonomous driving

Recommendation system

Machine learning \neq Artificial Intelligence

- Machine learning is a specific approach within the broader field of artificial intelligence.
- Machine learning specifically involves the use of algorithms and statistical models for learning from data.
- □AI encompasses a wider range of techniques, including
 - □rule-based systems
 - expert systems
 - machine learning
 - and more

Machine learning \neq Artificial Intelligence

- □IBM DeepBlue (1997)
- Chess game
- Isophisticated algorithm, expert-system, and bruteforce computation
- □Not machine learning

Deepmind AlphaGo (2016)

- □Go game (more complex)
- □Use deep neural networks
- Trained on datasets of expert go game

Major Types of machine learning

□Supervised learning: Given pairs of input-output, learn to map the input to output

□Image classification

□Speech recognition

□ Regression (continuous output)

Unsupervised learning: Given unlabeled data, uncover the underlying structure or distribution of the data

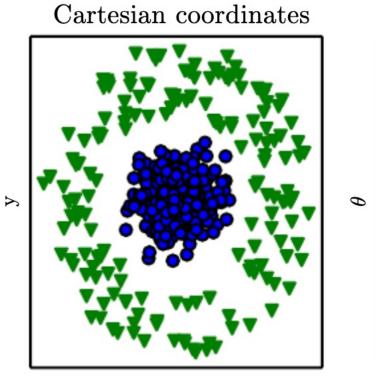
Clustering

Dimensionality reduction

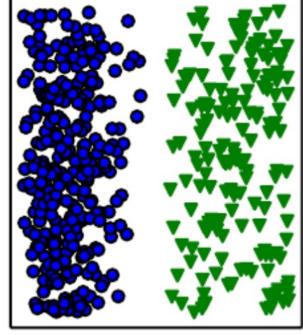
□ Reinforcement learning: training an agent to make decisions within an environment to maximize a cumulative reward

Game playing (e.g., AlphaGo)

Robot control


Other Types of machine learning

- Semi-supervised learning: Learning from a combination of labeled data and unlabeled data
- Transfer learning: applying knowledge learned from one task to another related task

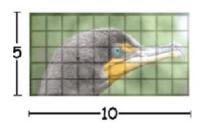


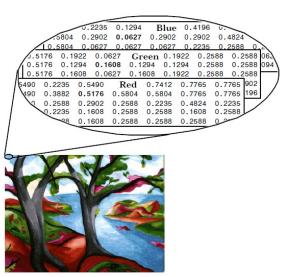
Examples of representations

х

Polar coordinates

r


UCMERCED

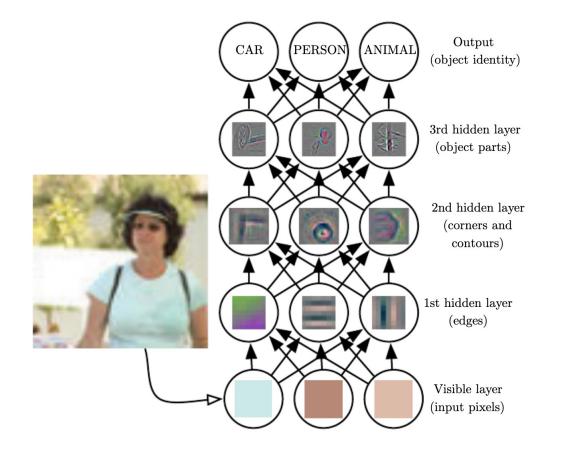


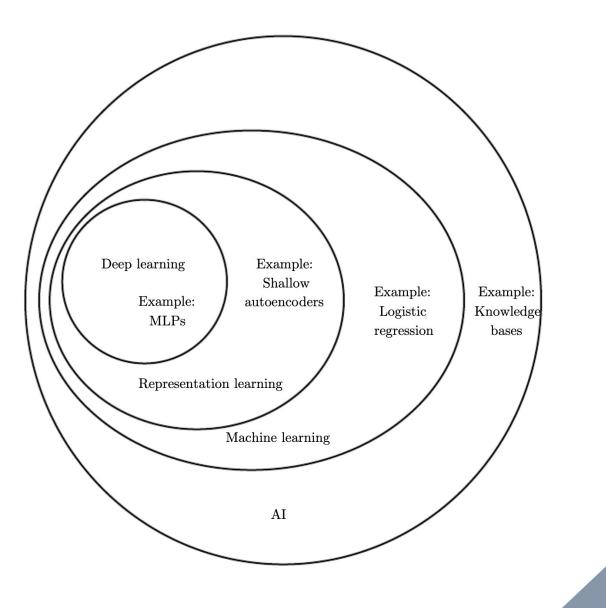
How to represent raw sensory data?

Cannot hand-craft representation

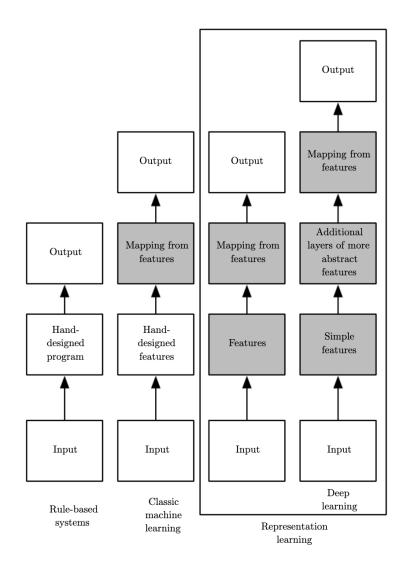
□ Representation learning

Matlab RGB Matrix




A deep learning model

Deep neural networks learn hierarchical representation



Deep Learning

Different AI systems

Deep Learning is not new

Deep learning dates back to 1940s!

McCulloch, W. S. and Pitts, W., A logical calculus of ideas immanent in nervous activity. Bulletin of Mathematical Biophysics, 1943

QRebranded multiple times, three waves of development

Gamma Known as "cybernetics" in the 1940s-1960s

Generation of the second secon

□Also known as "Artificial Neural Network" (ANN)

□Out of fashion since the mid 1990s until 2006. In the meantime, kernel methods and graphical model has advanced much more

Breakthrough in 2006: greedy layer-wise pretraining

Deep Learning Era since 2012

ImageNet Classification with Deep Convolutional Neural Networks

Alex Krizhevsky University of Toronto kriz@cs.utoronto.ca Ilya Sutskever University of Toronto ilya@cs.utoronto.ca Geoffrey E. Hinton University of Toronto hinton@cs.utoronto.ca

Landmarks in deep learning

- □1958 Perceptron (Simple `neural' model)
- □1986 Backpropagation (Practical Deep Neural networks)
- □1989 Convolutional networks (Supervised learning)
- □2012 AlexNet Image classification (Supervised learning)
- 2014 Generative adversarial networks (Unsupervised learning)
- 2014 Deep Q-Learning -- Atari games (Reinforcement learning)
- □2016 AlphaGo (Reinforcement learning)
- □2017 Machine translation (Supervised learning)
- □2019 Language models ((Un)supervised learning)
- 2022 Dall-E2 Image synthesis from text prompts ((Un)supervised learning)
- 2022 ChatGPT ((Un)supervised learning)
- 2023 GPT4 Multimodal model ((Un)supervised learning)

Slide credit: Simon Prince

Biological Motivation for Neural Network

SEM of brain tissue

A colored scanning electron micrograph (SEM) of a neuron (nerve cell).

Slide credit: Sargur Srihari

Biological Motivation for Neural Network

Human Brain

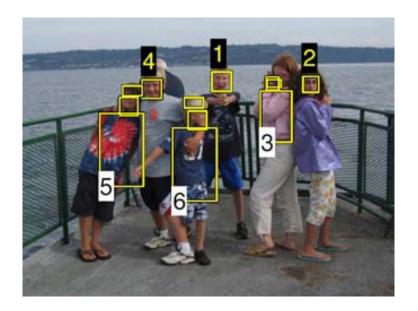
- Densely interconnected network of 1011 (100 billion) neurons
- Each connected to 104 (10,000) others
- □ Fastest neuron switching time is 10⁻³ seconds
- Activity excited or inhibited through connections to other neurons
- □Slow compared to computer switching speed: 10⁻¹⁰ secs

Slide credit: Sargur Srihari

Human Information Processing Speed

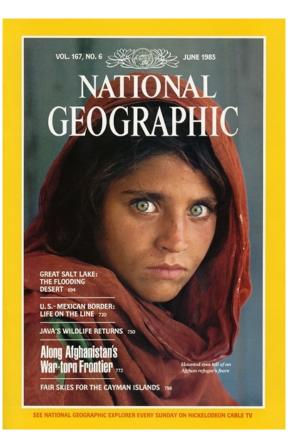
- Humans can make certain decisions (visually recognize your mother) in 10⁻¹ secs
- □Implies that in 10⁻¹ sec interval cannot possibly have more than a few hundred steps, given switch speed
- Therefore, information processing abilities of biological systems follow from highly parallel processing operations distributed over many neurons

Applications of Deep Learning


□Object detection and segmentation

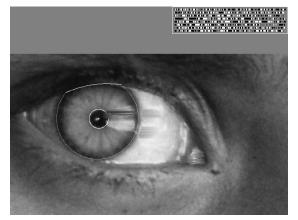
Detectron2

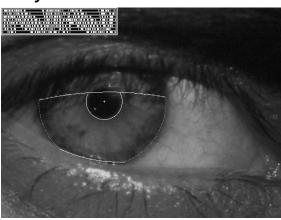
□ Face Detection


face detection around 00's

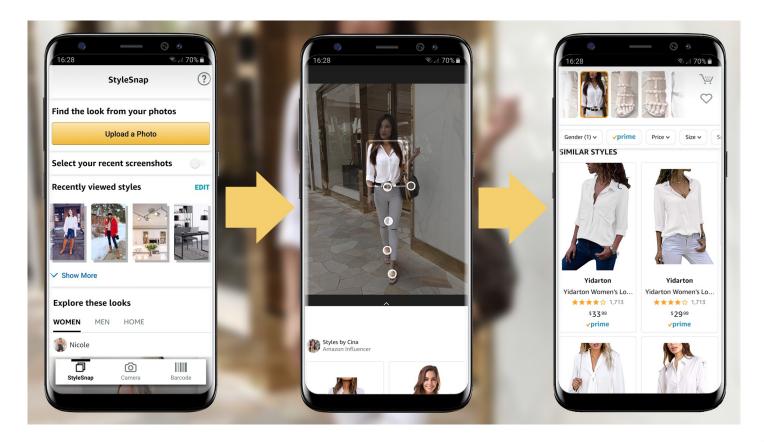
and now


□ Face recognition

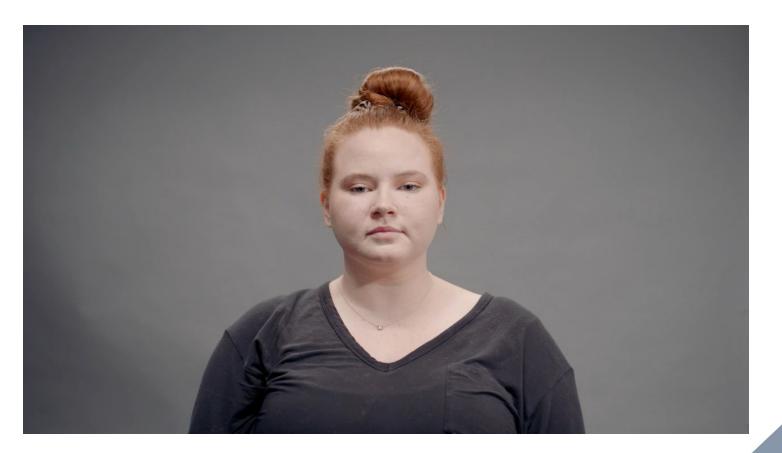

Who is she?



□ Face recognition


"How the Afghan Girl was Identified by Her Iris Patterns" Read the story

Uvisual Search



Amazon Shop the Look: A Visual Search System for Fashion and Home

Computer Graphics

Avatar

Meta Reality Labs Research - Codec Avatar

Image Synthesis

Generative Adversarial Network (GAN)

Image Synthesis from Text

DALLE-2

"A photo of an astronaut riding a horse."

"A modern, sleek Cadillac drives along the Gardiner expressway with downtown Toronto in the background, with a lens flare, 50mm photography."

"A man walking through the bustling streets of Kowloon at night, lit by many bright neon shop signs, 50mm lens."

ChatGPT- https://chat.openai.com/

You

How to obtain A+ grade in a graduate level course on deep learning?

ChatGPT

Achieving an A+ grade in a graduate-level course on deep learning requires a combination of dedication, effective study strategies, and practical application of knowledge. Here are some tips to help you excel in your deep learning course:

1. Understand the Basics:

• Ensure you have a solid understanding of the foundational concepts in machine learning and neural networks before delving into deep learning.

2. Master the Fundamentals:

• Thoroughly understand key deep learning concepts, such as activation functions, loss functions, optimization algorithms, and backpropagation.

3. Stay Current:

- Deep learning is a rapidly evolving field. Stay updated on the latest research papers, advancements, and trends by following relevant conferences, journals, and online platforms.
- 4. Hands-On Practice:
 - Apply theoretical concepts through hands-on projects. Use deep learning frameworks like TensorFlow or PyTorch to implement algorithms and models.

ChatGPT- https://chat.openai.com/

5. Work on Real-World Projects:

• Apply deep learning to real-world problems. This not only solidifies your understanding but also provides you with practical experience.

6. Participate in Competitions:

• Join online platforms like Kaggle to participate in deep learning competitions. This will give you exposure to diverse problems and help you improve your problem-solving skills.

7. Effective Time Management:

• Allocate dedicated time for studying and completing assignments. Avoid procrastination, and break down larger tasks into smaller, manageable chunks.

8. Engage with Class Material:

• Attend lectures regularly, actively participate in discussions, and ask questions. Engaging with the material will deepen your understanding.

9. Collaborate with Peers:

• Work on group projects or collaborate with classmates. Discussing concepts with others can provide different perspectives and enhance your learning.

10. Seek Feedback:

• Actively seek feedback from professors, TAs, or peers on your assignments and projects. Use constructive criticism to improve your work.

11. Review Regularly:

• Periodically review previous material to reinforce your understanding. Deep learning builds on foundational concepts, so a strong grasp of the basics is crucial.

ChatGPT- https://chat.openai.com/

12. Utilize Resources:

 Take advantage of online resources, tutorials, and books to supplement your learning. Recommended textbooks, online courses, and research papers can provide additional insights.

13. Stay Organized:

• Keep your study materials, notes, and assignments well-organized. This makes it easier to review and revise when necessary.

$14.\,$ Balance Theory and Practice:

• Find the right balance between theoretical understanding and practical application. Both are essential for success in deep learning.

15. Take Care of Yourself:

• Ensure a healthy work-life balance. Take breaks, get enough sleep, and maintain your overall well-being to stay focused and productive.

Remember, achieving an A+ grade is not just about memorizing information but demonstrating a deep understanding and application of concepts. Consistent effort, active engagement, and a genuine interest in the subject will contribute to your success.

Topics

□Brief review of machine learning (10%, 1 lec.)

Basics of neural networks (20%, 3 lec.)

□ Multi-layer perceptron

□ Feed-forward network and Recurrent neural network

□Optimization and regularization

□ Modern neural network architectures (40%, 5 lec)

Convolutional neural network

□Neural network for graph and set

□ Transformer

Advanced topics and applications (30%, 4 lec)

Deep structured model

Deep generative model (VAE, GAN, diffusion model)

Multimodal deep learning

Guest lecture (1 lec.)

UCMERCED

Prerequisites

- Linear algebra
- Probability and Statistics
- Basics of machine learning (To be reviewed)
- Data structure and algorithms
- □ Python programming
 - □Will use Pytorch or Tensorflow framework

Grading

- Exams (20%) Midterm:20%
- Project (50%)
 - Midterm report 10%Final presentation 10%Final report 30%
- Assignment (30%)
 - □3 assignments
 - **□**5%, 10%, 15%

Project

At most two students for each project

- □ If two, expect more complex/larger scale project, include a statement of each student's contribution.
- □ Midterm report (Up to2 pages excluding reference)
 - □Project proposal
 - □ Preliminary results
- □Final project presentation (10 minutes + 2 minutes Q/A)
- □ Final project report (Up to 8 pages excluding reference)
- Can choose your own research project
- Alternatively, a list of projects provided

□Use Python notebook via Google Colab for assignment

Change runtime type	
Runtime type	
Python 3	•
Hardware accelerato	 ⑦ T4 GPU ○ A100 GPU ○ V100 GPU
Want access to pre	nium GPUs? Purchase additional compute units

□ For project

- ☐Your own GPU
- Google cloud credit (spot VM)

Course Materials

Course webpage

- <u>https://ucmercedeecs230.github.io/</u>
- Syllabus
- Lecture notes
- Assignments

Textbook

Understanding Deep Learning by Simon J.D. Prince Published by MIT Press 2023.

https://udlbook.github.io/udlbook/

□ Reference for background study:

- Deep Learning by Ian Goodfellow and Yoshua Bengio and Aaron Courville <u>https://www.deeplearningbook.org/</u>
- UvA Deep Learning Tutorials https://uvadlc-notebooks.readthedocs.io/en/latest/

