

Generative Models in Computer Vision

Dr. Tao Hu, Ommer-Lab PostDoc https://taohu.me

Agenda

- Brief Theory of Generative Models
- Our work introduction
 - ZigMa: A DiT-style Zigzag Mamba Diffusion Model

DALL-E

Here are two images showcasing the University of Calgary during winter, with snow-covered landscapes and gentle snowflakes adding to the serene atmosphere.

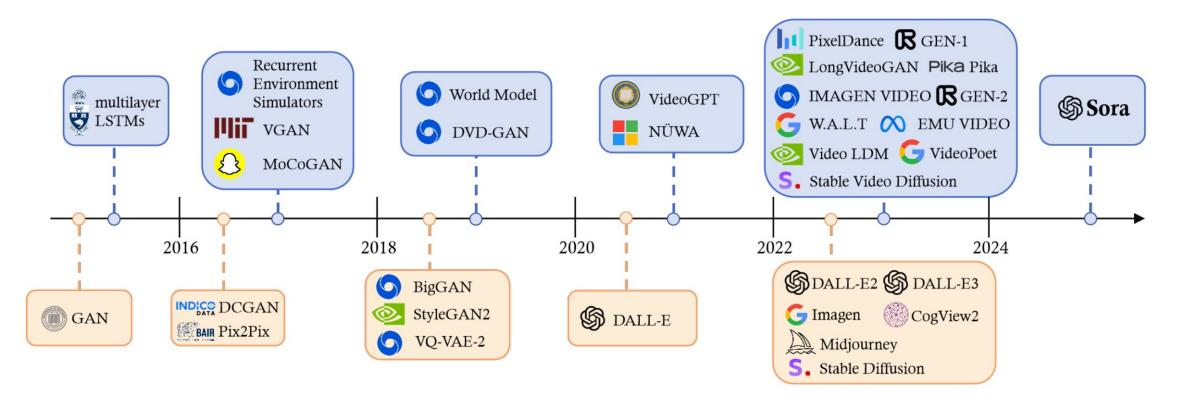


Figure 3: History of Generative AI in Vision Domain.

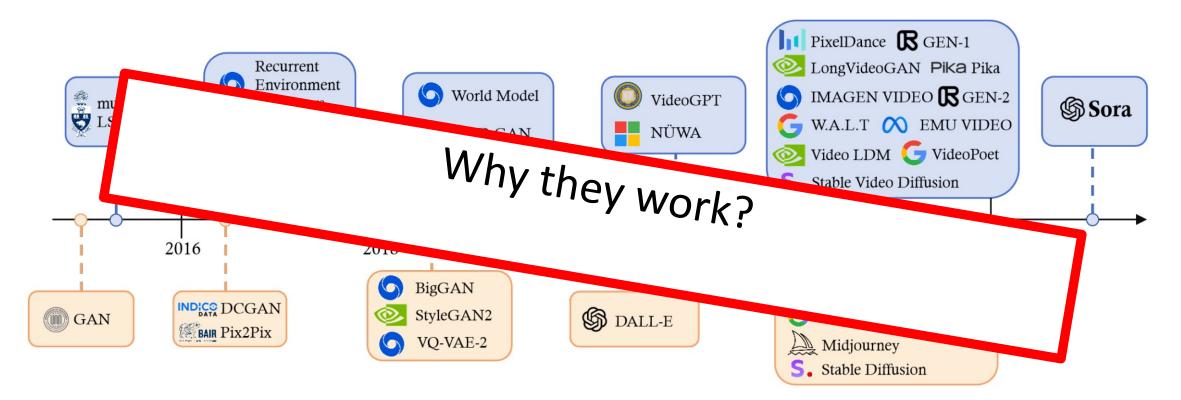


Figure 3: History of Generative AI in Vision Domain.

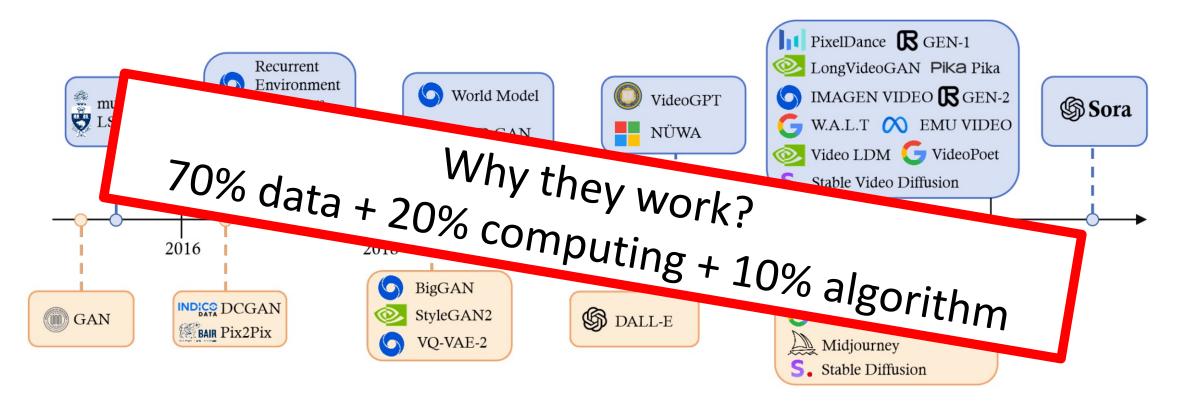


Figure 3: History of Generative AI in Vision Domain.

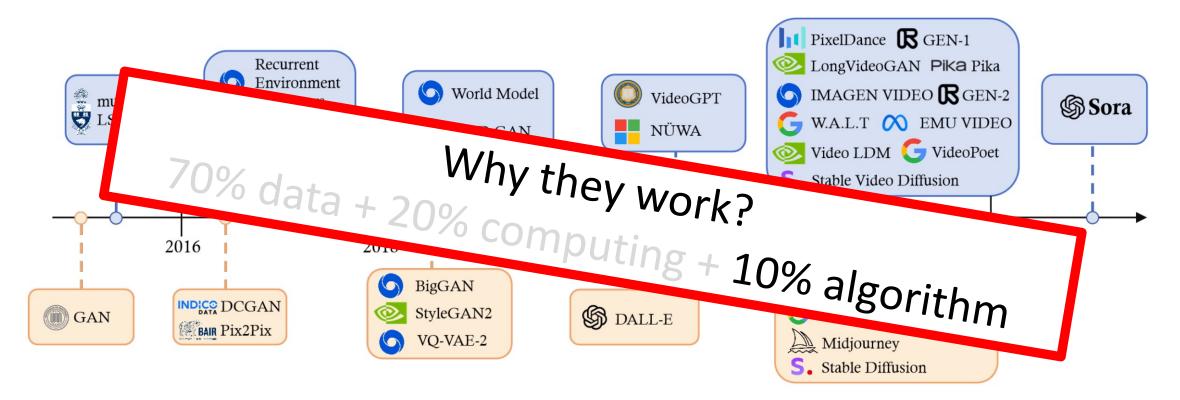
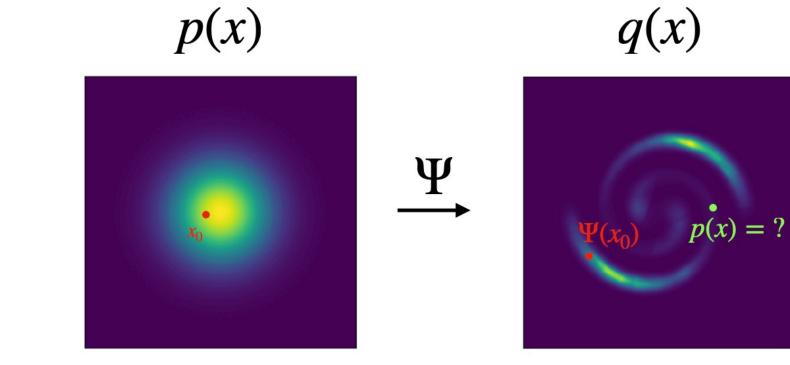


Figure 3: History of Generative AI in Vision Domain.

Generative Models



 $\Psi(x_0) \sim q$

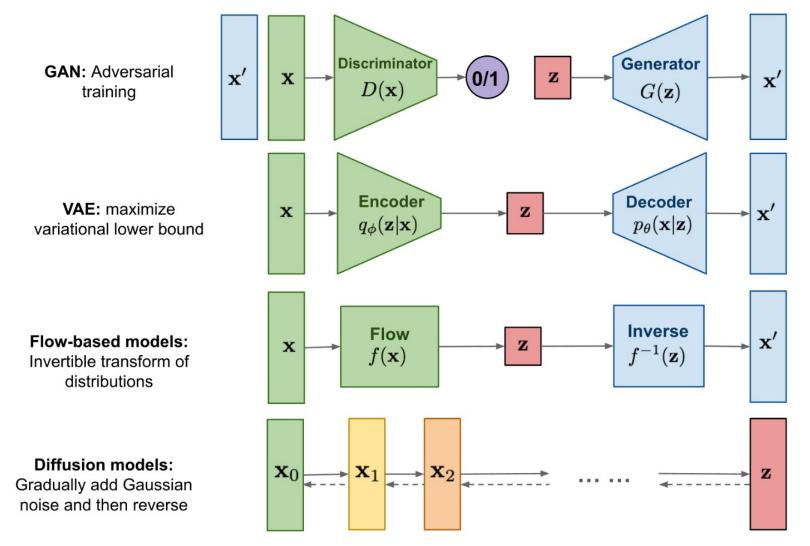
 \mathbb{R}^{d}

Generative Models

LUDWIG-MAXIMILIANS-UNIVERSITÄT

MÜNCHEN

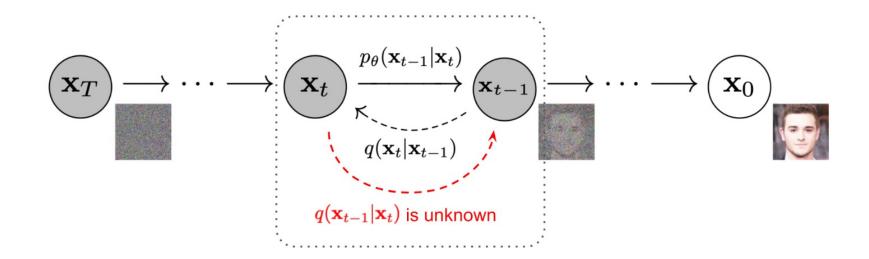
Dr. TAO HU



From Lilian Weng's blog

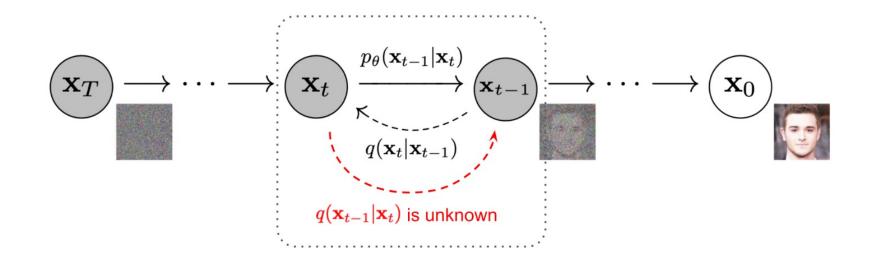
Diffusion Basics

 $q(\mathbf{x}_t | \mathbf{x}_{t-1}) = \mathcal{N}(\mathbf{x}_t; \sqrt{1 - eta_t} \mathbf{x}_{t-1}, eta_t \mathbf{I})$



Diffusion Basics

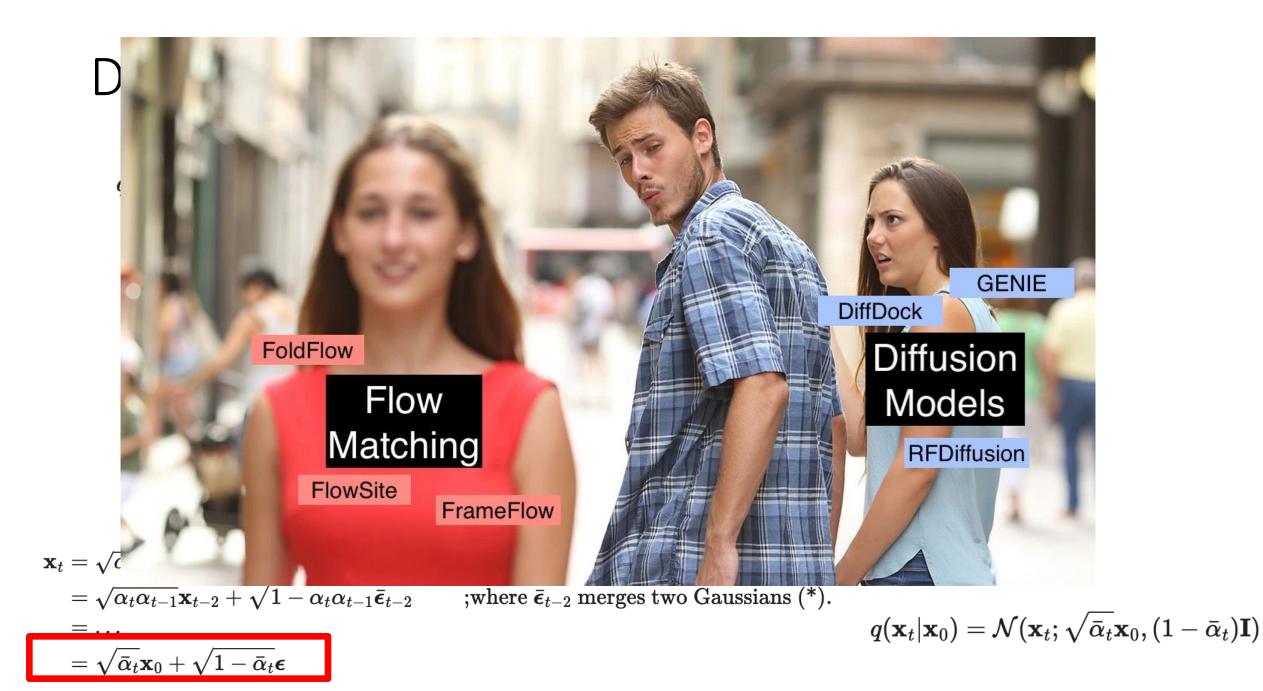
 $q(\mathbf{x}_t | \mathbf{x}_{t-1}) = \mathcal{N}(\mathbf{x}_t; \sqrt{1 - eta_t} \mathbf{x}_{t-1}, eta_t \mathbf{I})$



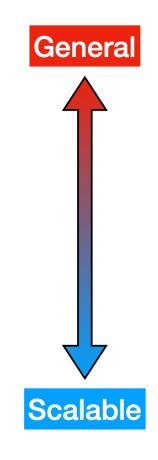
$$egin{aligned} \mathbf{x}_t &= \sqrt{lpha_t} \mathbf{x}_{t-1} + \sqrt{1-lpha_t} oldsymbol{\epsilon}_{t-1} \ &= \sqrt{lpha_t} lpha_{t-1} \mathbf{x}_{t-2} + \sqrt{1-lpha_t} lpha_{t-1} oldsymbol{ar{\epsilon}}_{t-2} \ &= \dots \ &= \sqrt{ar{lpha}_t} \mathbf{x}_0 + \sqrt{1-ar{lpha}_t} oldsymbol{\epsilon} \end{aligned}$$

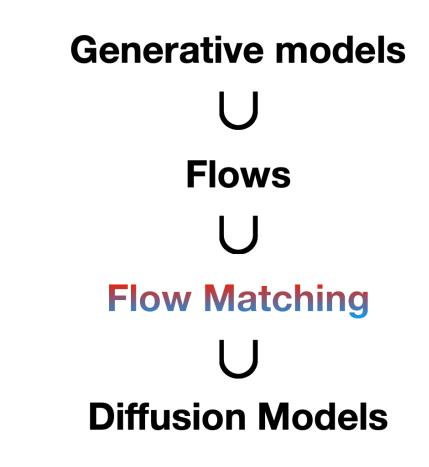
;where $\boldsymbol{\epsilon}_{t-1}, \boldsymbol{\epsilon}_{t-2}, \dots \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$;where $\bar{\boldsymbol{\epsilon}}_{t-2}$ merges two Gaussians (*).

$$q(\mathbf{x}_t|\mathbf{x}_0) = \mathcal{N}(\mathbf{x}_t; \sqrt{ar{lpha}_t}\mathbf{x}_0, (1-ar{lpha}_t)\mathbf{I})$$



Flow Matching Basics





Flow Matching: Tractable Loss

$$L_{\text{FM}}(q \| p_1) = \min \mathbb{E}_{t, p_t(x)} \| v_t(x) - u_t(x) \|^2$$

The gradients of losses coincide: $\nabla_{\theta} L_{\rm FM} = \nabla_{\theta} L_{\rm CFM}$

$$L_{\text{CFM}}(q \| p_1) = \min \mathbb{E}_{t, q(x_1), p_t(x|x_1)} \| v_t(x) - u_t(x|x_1) \|^2$$

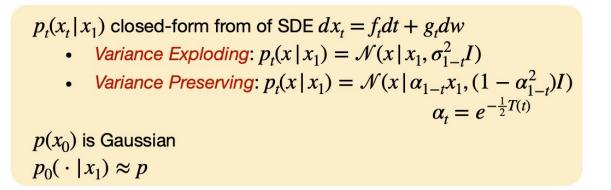
= min $\mathbb{E}_{t, q(x_1), p(x_0)} \| v_t(x_t) - \dot{x}_t \|^2$
$$x_t \sim p_t(x|x_1)$$

$$\dot{x}_t = u_t(x_t|x_1)$$

[L et al. 2022]

Comparison: Flow Matching vs. Diffusion

Algorithm 2: Diffusion training.		
Input : dataset q , noise p		
Initialize s^{θ}		
while not converged do		
$egin{array}{ll} t \sim \mathcal{U}([0,1]) \ x_1 \sim q(x_1) \end{array}$	\triangleright sample time	
$x_1 \sim q(x_1)$	\triangleright sample data	
_ 、 , , ,	\triangleright sample conditional prob	
Gradient step with		
$igsquare$ $\nabla_{ heta} \ s^{ heta}_t(x_t) - abla_{x_t} \log p_t(x_t x_1) \ ^2$		
Output: v^{θ}		



Comparison: Flow Matching v.s. Diffusion

Algorithm 1: Flow Matching training.	Algorithm 2: Diffusion training.
Input : dataset q , noise p	Input : dataset q , noise p
Initialize v^{θ}	Initialize s^{θ}
while not converged do	while not converged do
$t \sim \mathcal{U}([0,1])$ \triangleright sample time	$t \sim \mathcal{U}([0,1])$ \triangleright sample time
$x_1 \sim q(x_1)$ $ ho$ sample data	$x_1 \sim q(x_1)$ \triangleright sample data
$x_0 \sim p(x_0)$ \triangleright sample noise	$x_t = p_t(x_t x_1) \triangleright \text{ sample conditional prob}$
$x_t = \Psi_t(x_0 x_1) $ $ ho ext{ conditional flow}$	Gradient step with
Gradient step with $ abla_{ heta} \ v_t^{ heta}(x_t) - \dot{x}_t \ ^2$	$igsquare$ $igsquare$ $\nabla_ heta \ s^ heta_t(x_t) - abla_{x_t} \log p_t(x_t x_1)\ ^2$
Output: v^{θ}	Output: v^{θ}

 $p_t(x_t | x_1)$ general $p(x_0)$ is general

Dr. TAO HU

LUDWIG-MAXIMILIANS UNIVERSITÄT

MÜNCHEN

 $\begin{array}{l} p_t(x_t \mid x_1) \text{ closed-form from of SDE } dx_t = f_t dt + g_t dw \\ \bullet \quad \textit{Variance Exploding: } p_t(x \mid x_1) = \mathcal{N}(x \mid x_1, \sigma_{1-t}^2 I) \\ \bullet \quad \textit{Variance Preserving: } p_t(x \mid x_1) = \mathcal{N}(x \mid \alpha_{1-t} x_1, (1 - \alpha_{1-t}^2)I) \\ \alpha_t = e^{-\frac{1}{2}T(t)} \\ p(x_0) \text{ is Gaussian} \\ p_0(\cdot \mid x_1) \approx p \end{array}$

Beyond Diffusion Models

- A more general framework that simplifies diffusion models. This generalized framework can provide more freedom for the model design.
- A special case in this framework can be used to facilitate sampling.
- Extension to Schrodinger Bridge between two distributions.

Beyond Diffusion Models

- A more general framework that simplifies diffusion models. This generalized framework can provide more freedom for the model design.
- A special case in this framework can be used to facilitate sampling.
- Extension to Schrodinger Bridge between two distributions.

Open questions:

- Ordinary Differential Equation or Stochastic Differential Equation?
 - Stochastic Interpolants: A Unifying Framework for Flows and Diffusions. Albergo et al.
 - Elucidating the Design Space of Diffusion-Based Generative Models, Karras et al, NeurIPS22.
 - Minimizing Trajectory Curvature of ODE-based Generative Models. Lee et al, ICML23
- Latent space or pixel space?
 - NeurIPS23 Tutorial:
 - Latent Diffusion Models: Is the Generative AI Revolution Happening in Latent Space?

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN Dr. TAO HU

ZigMa: A DiT-style Zigzag Mamba Diffusion Model

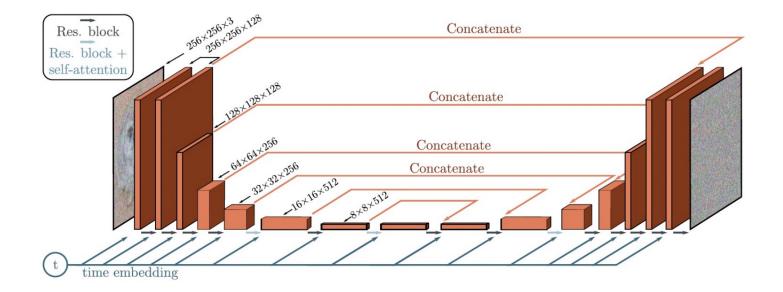
Vincent Tao Hu, Stefan Andreas Baumann, Ming Gui, Olga Grebenkova, Pingchuan Ma, Johannes Fischer, and Björn Ommer

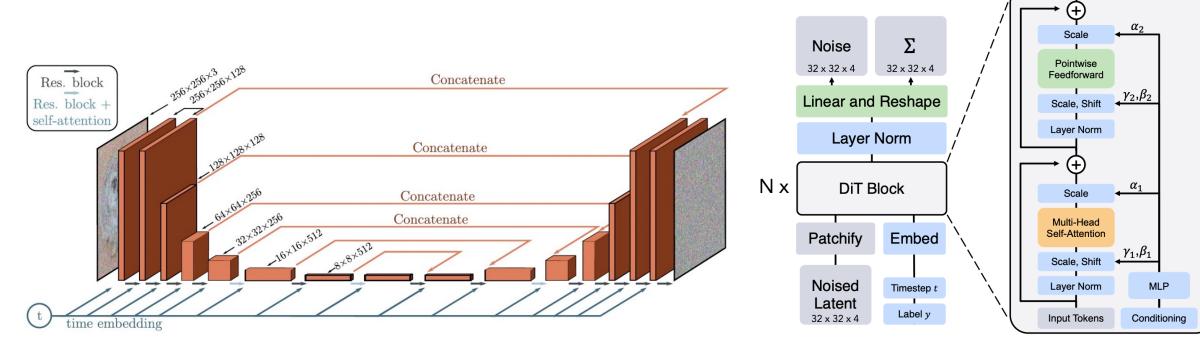
Background

• Quadratic Complexity in Attention, it hinders the application on many downstream tasks that requires long token number, e.g., high-resolution image generation, long video generation, etc.

• Diffusion Models is not so generalizable, and flexible. Painful noise schedule and need to be a gaussian distribution.

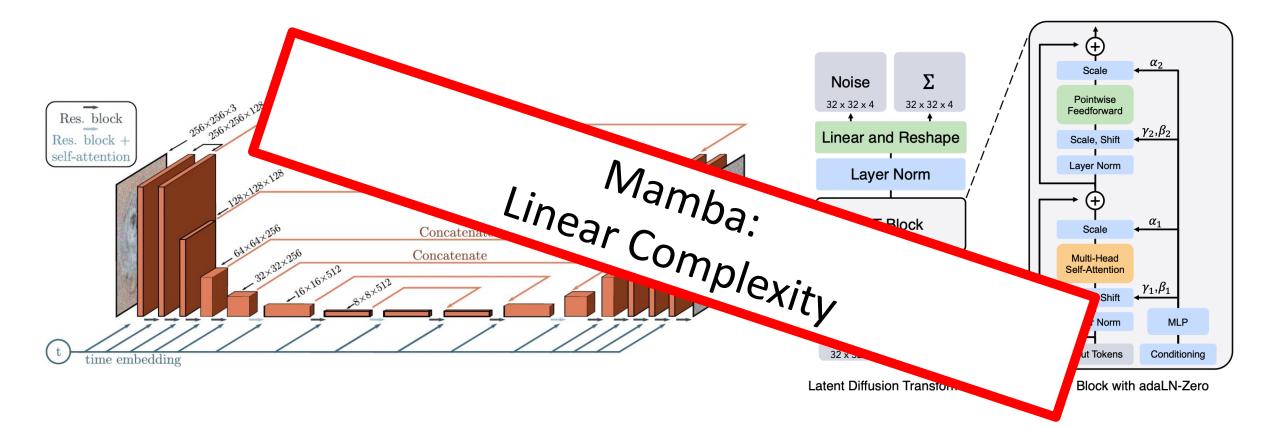
Background Mamba: Linear Complexity binders the application on many Quadratic Cor mber, e.g., highdownstream task resolution image generate on, etc. New framework: Stochastic Interpolant ed flexible. Painful noise Diffusion Mode schedule and need to be

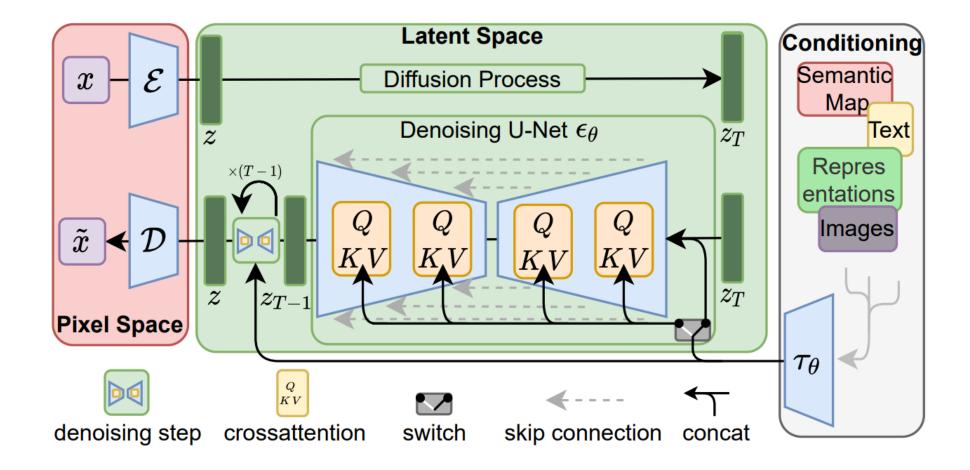


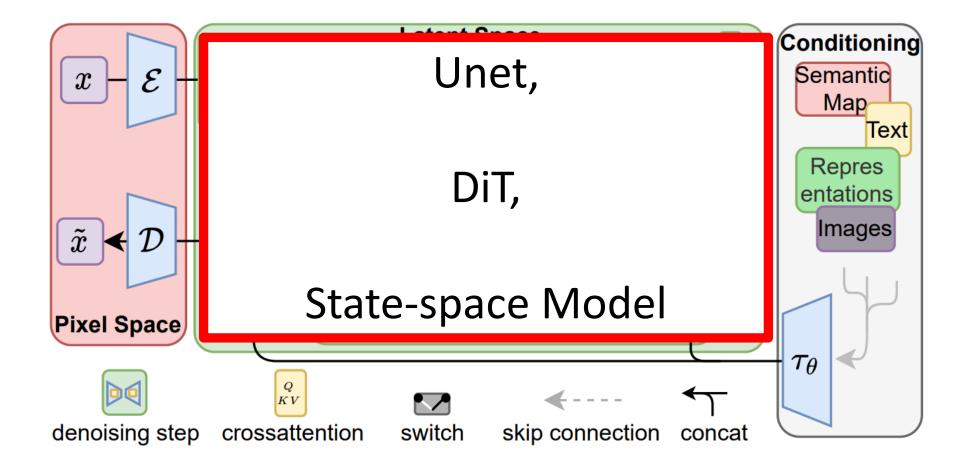


Latent Diffusion Transformer

DiT Block with adaLN-Zero







Why State-Space Model?

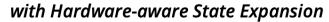
➢ for image 256x256, latent space 4x32x32.

➤What if we need to generate 10k x 10k image?

>What if we need to generate a 1k frames of videos?

Background: Mamba- a new State-Space Model

Selective State Space Model



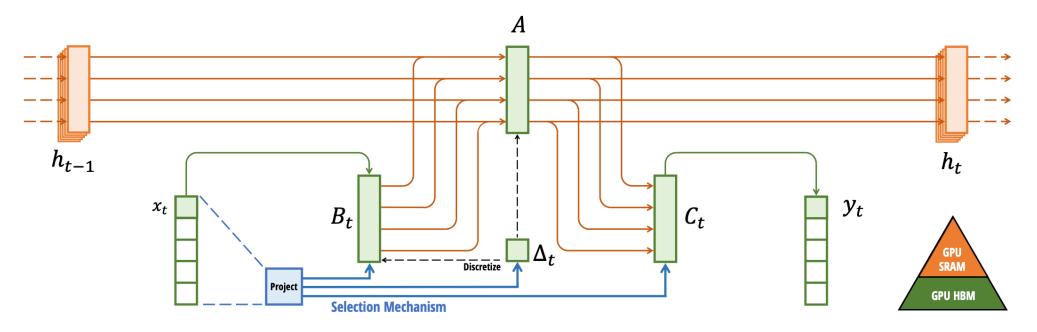
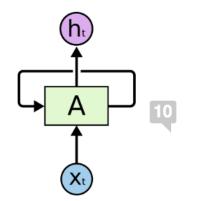
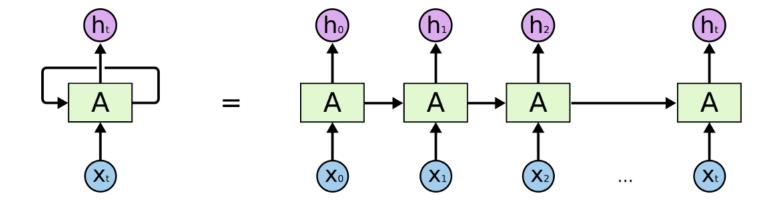


Figure 1: (**Overview**.) Structured SSMs independently map each channel (e.g. D = 5) of an input x to output y through a higher dimensional latent state h (e.g. N = 4). Prior SSMs avoid materializing this large effective state (DN, times batch size B and sequence length L) through clever alternate computation paths requiring time-invariance: the (Δ , A, B, C) parameters are constant across time. Our selection mechanism adds back input-dependent dynamics, which also requires a careful hardware-aware algorithm to only materialize the expanded states in more efficient levels of the GPU memory hierarchy.

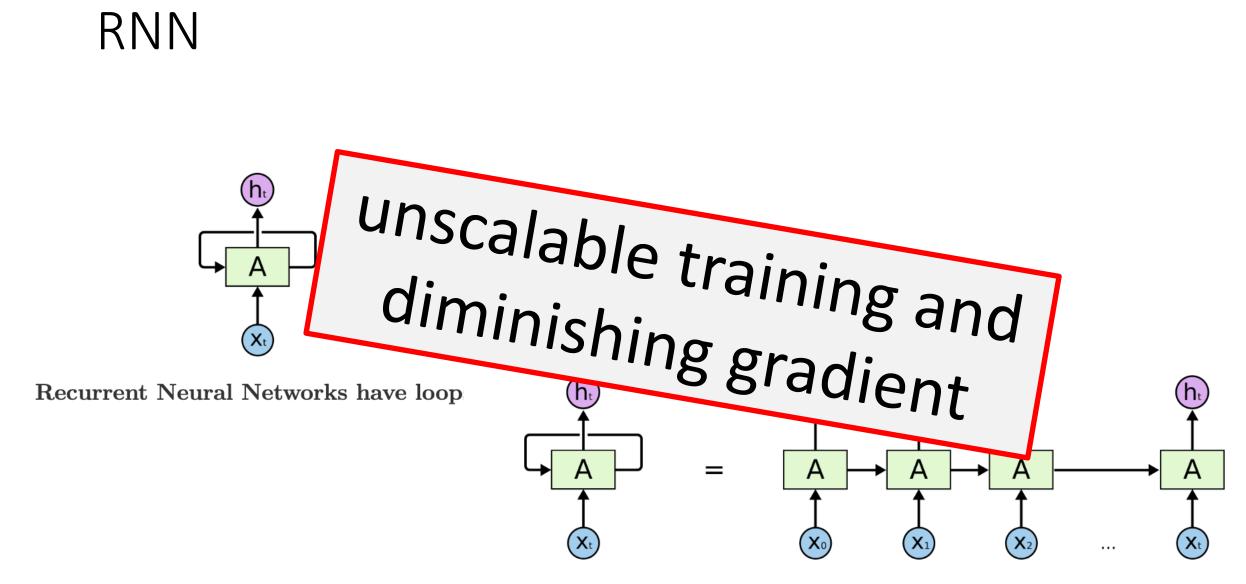
RNN



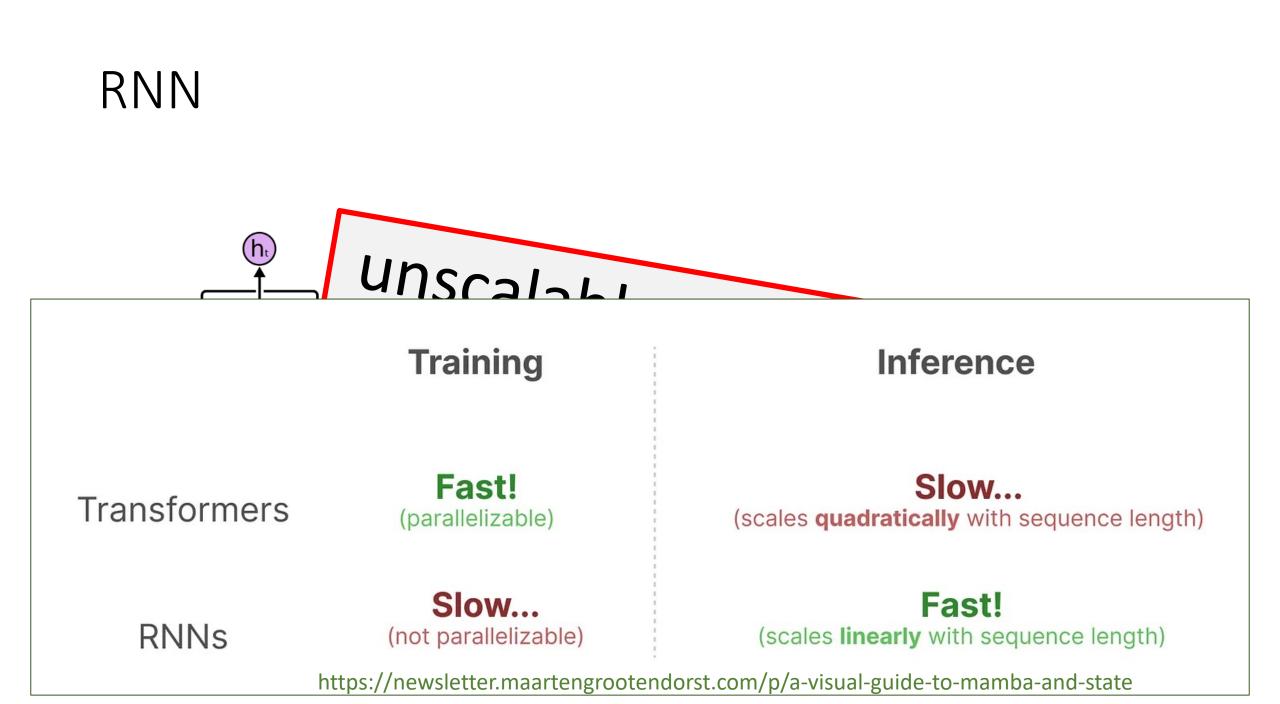
Recurrent Neural Networks have loop



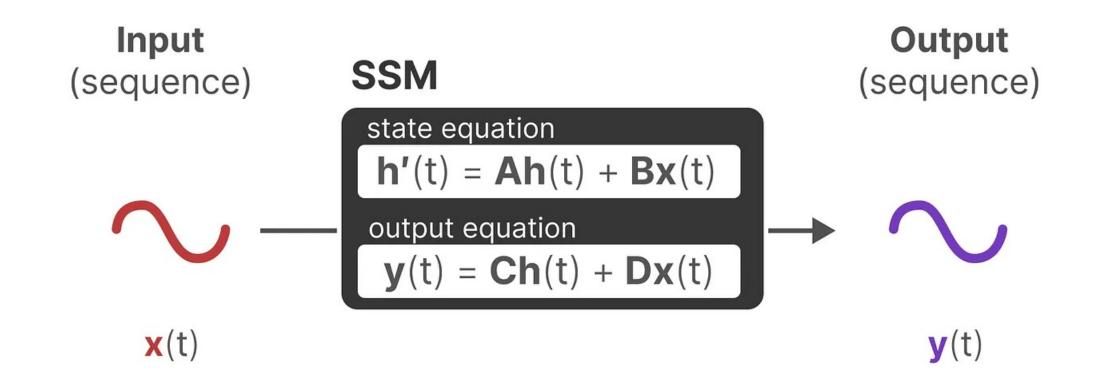
An unrolled recurrent neural network.



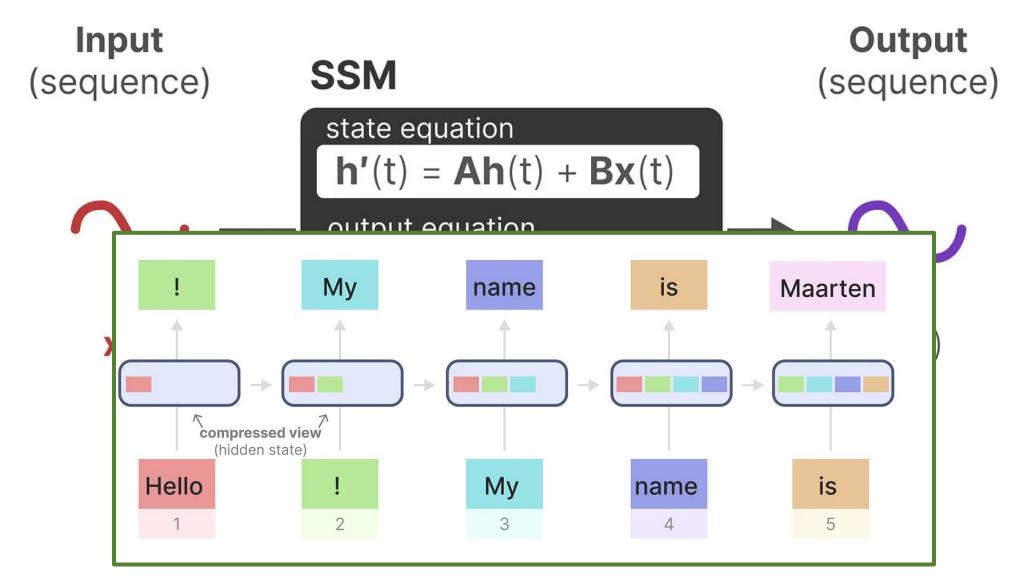
An unrolled recurrent neural network.



A basic equations of State-Space Model

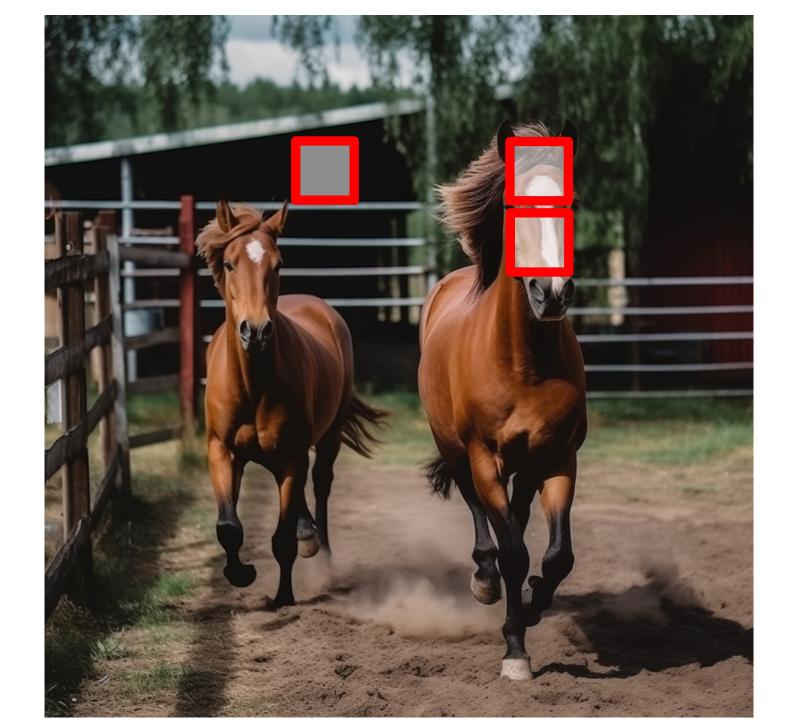


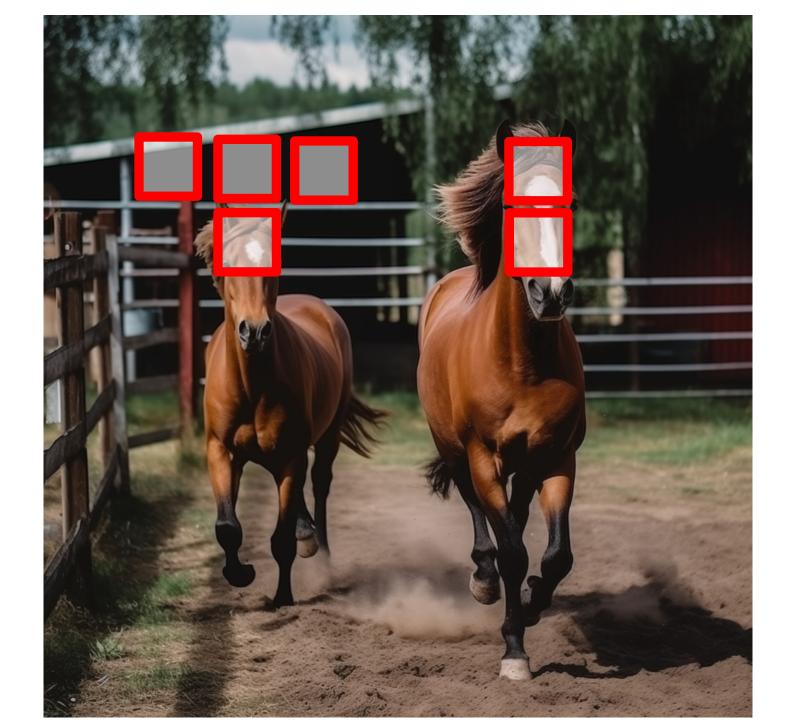
A basic equations of State-Space Model

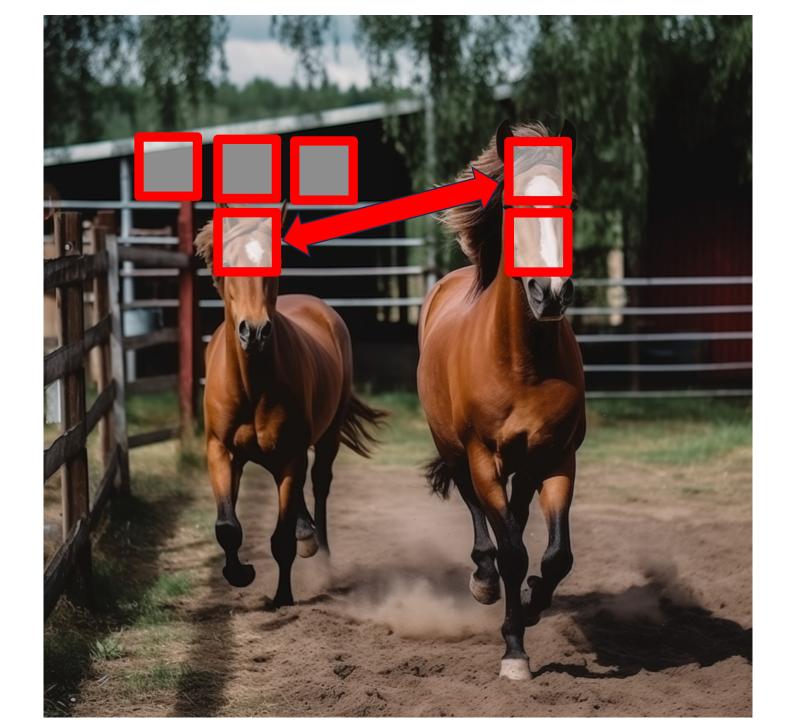


Challenges for State-Space Model

- State-space Model is similar to a Linear-RNN, so it's sensitive to the order of the token
- Neighbourhood tokens need to be semantically similar.
- Challenging to fuse various modalities e.g., image and text.



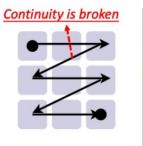




20k iterations training

30k iterations training

Our Solution

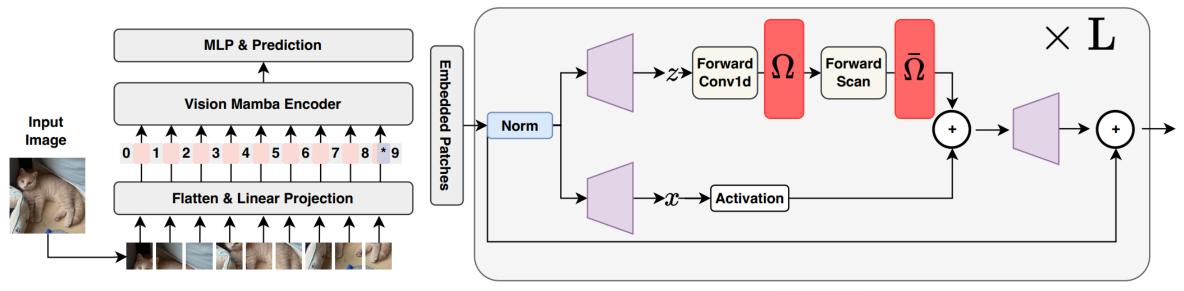




Sweep without considering Spatial Continuity

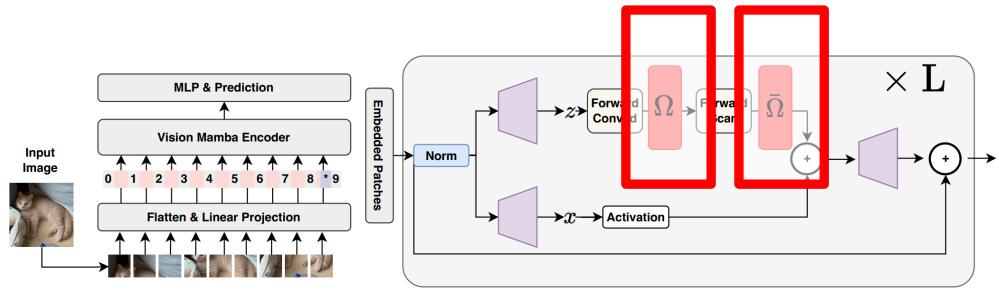
Single Direction Zigzag Mamba

Multi Direction Zigzag Mamba



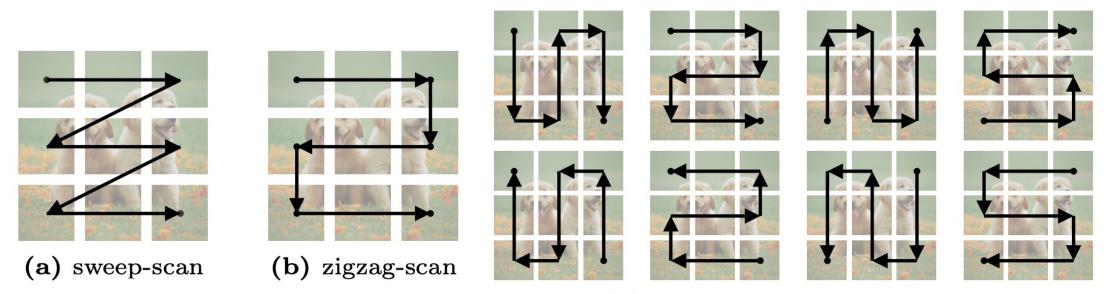
Mamba Scan

Figure 2: ZigMa. Our backbone is structured in L layers, mirroring the style of DiT [65]. We use the single-scan Mamba block as the primary reasoning module across different patches. To ensure the network is positionally aware, we've designed an arrange-rearrange scheme based on the single-scan Mamba. Different layers follow pairs of unique rearrange operation Ω and reverse rearrange $\overline{\Omega}$, optimizing the position-awareness of the method.



Mamba Scan

Figure 2: ZigMa. Our backbone is structured in L layers, mirroring the style of DiT [65]. We use the single-scan Mamba block as the primary reasoning module across different patches. To ensure the network is positionally aware, we've designed an arrange-rearrange scheme based on the single-scan Mamba. Different layers follow pairs of unique rearrange operation Ω and reverse rearrange $\overline{\Omega}$, optimizing the position-awareness of the method.



(c) zigzag-scan with 8 schemes

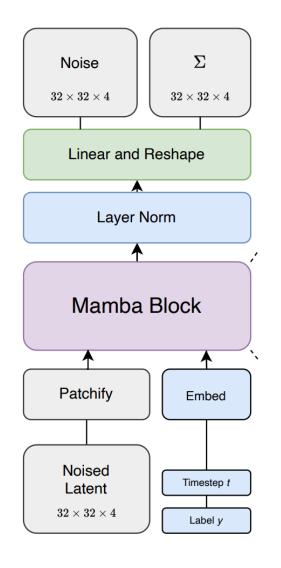


Figure 4: The Detail of our Zigzag Mamba block. The detail of Mamba Scan is shown in Figure 2. The condition can include a timestep and a text prompt. These are fed into an MLP, which separately modulates the Mamba scan for long sequence modeling and cross attention for multi-modal reasoning.

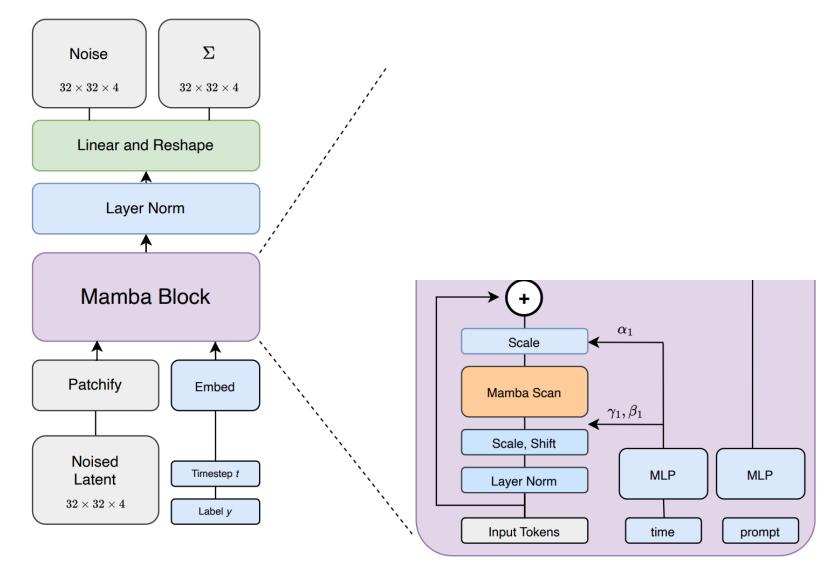


Figure 4: The Detail of our Zigzag Mamba block. The detail of Mamba Scan is shown in Figure 2. The condition can include a timestep and a text prompt. These are fed into an MLP, which separately modulates the Mamba scan for long sequence modeling and cross attention for multi-modal reasoning.

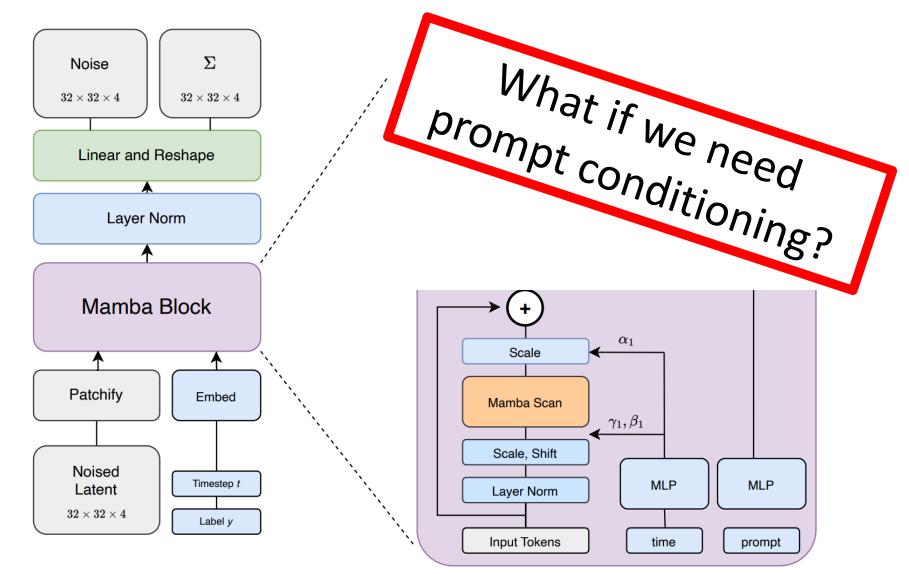


Figure 4: The Detail of our Zigzag Mamba block. The detail of Mamba Scan is shown in Figure 2. The condition can include a timestep and a text prompt. These are fed into an MLP, which separately modulates the Mamba scan for long sequence modeling and cross attention for multi-modal reasoning.

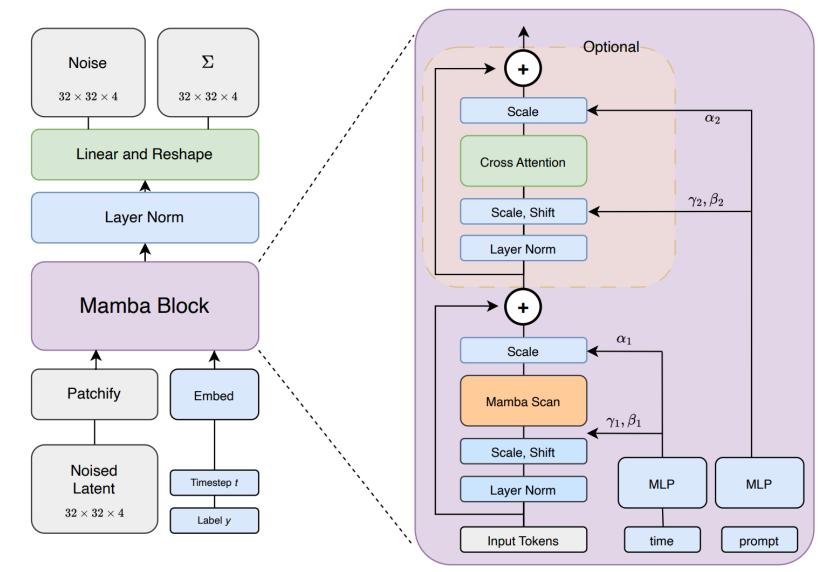
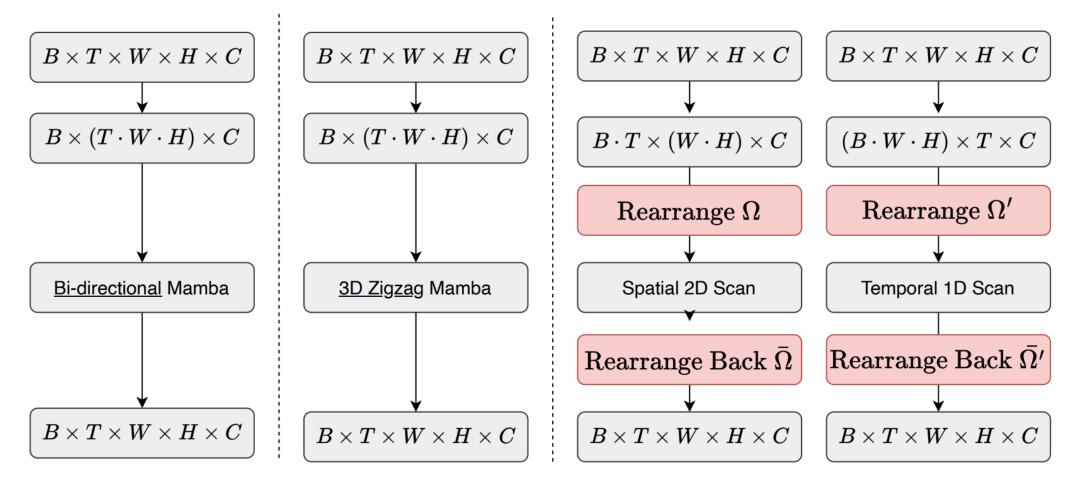


Figure 4: The Detail of our Zigzag Mamba block. The detail of Mamba Scan is shown in Figure 2. The condition can include a timestep and a text prompt. These are fed into an MLP, which separately modulates the Mamba scan for long sequence modeling and cross attention for multi-modal reasoning.

Generalizing to 3D video



(a). sweep-scan (b). 3D zigzag-scan (c). 2D zigzag scan + 1D normal scan

Diffusion Framework

$$\mathcal{L}_{\mathbf{s}}(\theta) = \int_{0}^{T} \mathbb{E}[\|\sigma_t \mathbf{s}_{\theta}(\mathbf{x}_t, t) + \boldsymbol{\varepsilon}\|^2] \mathrm{d}t.$$
(11)

$$\mathcal{L}_{\mathbf{v}}(\theta) = \int_{0}^{T} \mathbb{E}[\|\mathbf{v}_{\theta}(\mathbf{x}_{t}, t) - \dot{\alpha}_{t}\mathbf{x}_{*} - \dot{\sigma}_{t}\boldsymbol{\varepsilon}\|^{2}] \mathrm{d}t, \qquad (12)$$

where θ represents the Zigzag Mamba network that we described in the previous section, we adopt the linear path for training, due to its simplicity and relatively straight trajectory:

$$\alpha_t = 1 - t, \qquad \sigma_t = t. \tag{13}$$

Diffusion Framework

Sampling based on vector v and score s. Following [3, 76], the timedependent probability distribution $p_t(\mathbf{x})$ of \mathbf{x}_t also coincides with the distribution of the reverse-time SDE [6]: $d\mathbf{X}_t = \mathbf{v}(\mathbf{X}_t, t)dt + \frac{1}{2}w_t \mathbf{s}(\mathbf{X}_t, t)dt + \sqrt{w_t}d\bar{\mathbf{W}}_t,$ where θ represents the Zigzag Mamba network that we (7) section, we adopt the linear path for training, due to its simplicity and straight trajectory:

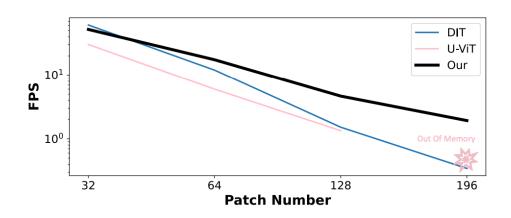
$$\alpha_t = 1 - t, \qquad \sigma_t = t. \tag{13}$$

Result

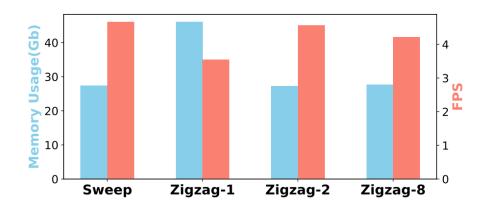
Table 1: Ablation of Scanning Scheme Number. We evaluate various zigzag scanning schemes. Starting from a simple "Sweep" baseline, we consistently observe improvements as more schemes are implemented.

MultiModal-CelebA256			MultiModal-CelebA512			
	FID ^{5k}	FDD ^{5k}	KID ^{5k}	FID ^{5k}	FDD ^{5k}	KID ^{5k}
Sweep	158.1	75.9	0.169	162.3	103.2	0.203
Zigzag-1	65.7	47.8	0.051	121.0	78.0	0.113
Zigzag-2	54.7	45.5	0.041	96.0	59.5	0.079
Zigzag-8	45.5	26.4	0.011	34.9	29.5	0.023

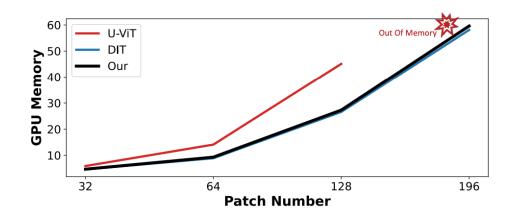
Result



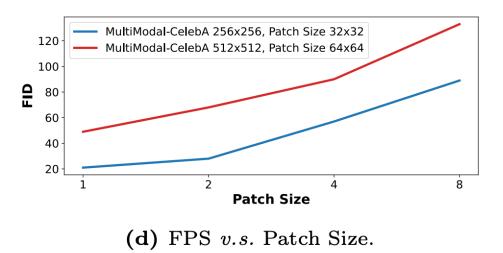
(a) FPS v.s. Patch Number.



(c) GPU usage of variants of our method.



(b) GPU Memory v.s. Patch Number.



Result

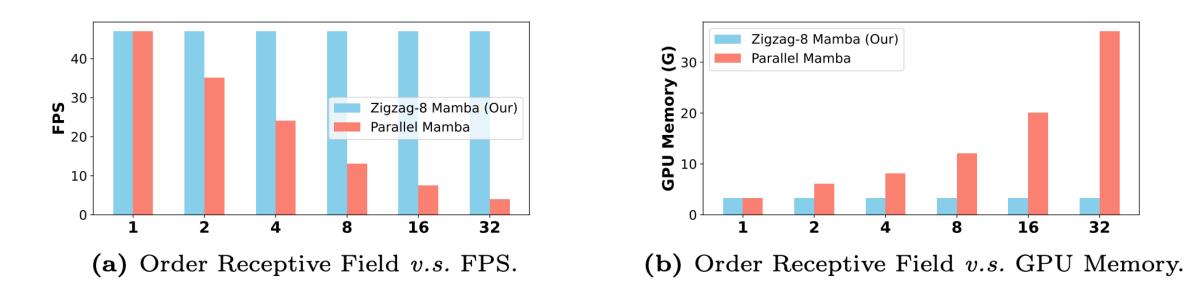


Figure 8: The ablation study about Order Receptive Field, FPS, GPU Memory.

Main results

Table 2: Main Results on MS-COCO dataset. Our method consistently outperforms the baseline and can achieve even better results when the training scale is increased.

Variants	FID ^{5k}
Sweep	195.1
Zigzag-1	73.1
Bidirection Mamba [96]	60.2
Zigzag-8	41.8
$Zigzag-8 \times 16GPU$	33.8

Table 4: Video Scan Scheme on UCF101 dataset. Our method outperforms the baseline and can achieve even better results when the training scale is increased.

Method	Frame-FID ^{5k}	FVD ^{5k}
Bidirection Mamba [96] -4GPU	256.1	320.2
3D Zigzag Mamba -4GPU	238.1	282.3
Factorized 3D Zigzag Mamba -4GPU	216.1	210.2
Bidirection Mamba [96] -16GPU	146.2	201.1
Factorized 3D Zigzag Mamba -16GPU	121.2	140.1

Results

Position Embedding	Scan	FID ^{5k}
_	sweep2	21.33
_	zigzag8	14.27
Sinusoidal	sweep2	18.47
Sinusoidal	zigzag8	14.03
Learnable	sweep2	16.38
Learnable	zigzag8	13.32

Learnable PE is best

Scan-ORF	FID ^{5k}
hilbert-8	27.38
hilbert-2	61.67
zigzag-2	15.45
zigzag-8	13.32

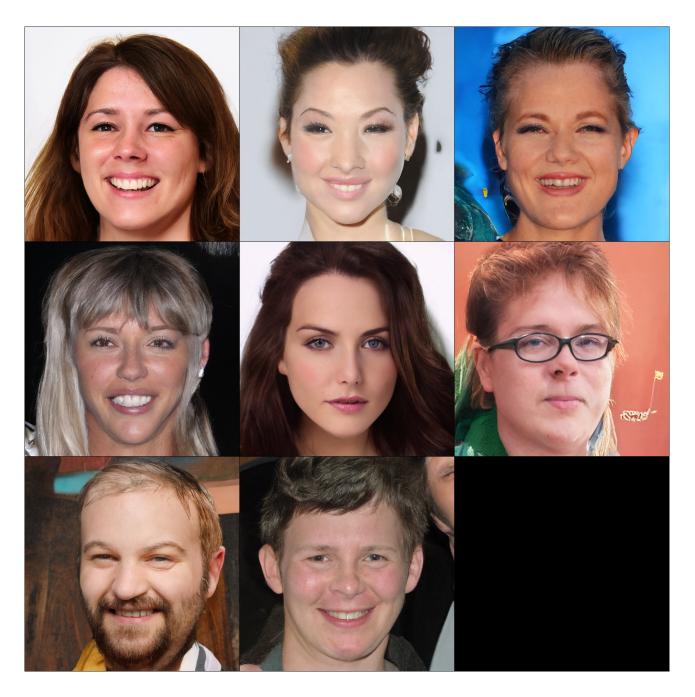
Hilbert path is too complex to learn

ORF of ZigZag	FID ^{5k}
sweep1	130.00
sweep2	16.38
zigma-2	15.45
4	13.46
6	13.42
8	13.32

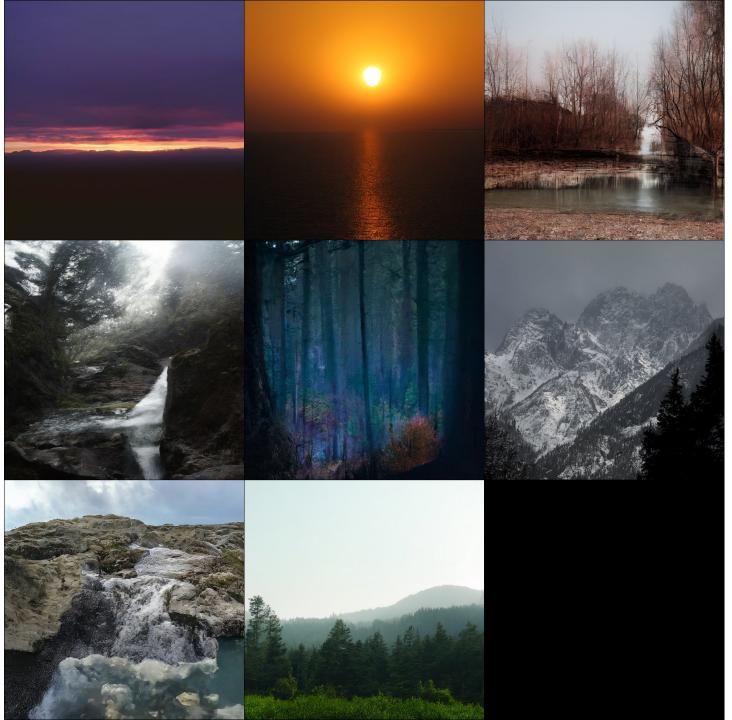
Scan patch will saturate around 4.

But we recommend to use 8, as there is no extra parameter and memory burden.

Visualization



Visualization



Conclusion

- A new *scalable* backbone: Mamba
- A *generalizable* framework: Stochastic Interpolant
- Generalized to 3D video

-

Thank you

Acknowledgements

- Some ppts are from Yaron Lipman
- <u>https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state</u>
- Lilian Weng's blog